Skip to main content
Log in

Differential profiling analysis of miRNAs reveals a regulatory role in low N stress response of Populus

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Nitrogen (N) is an essential mineral element for plant growth processes, and its availability severely affects the productivity of plants, especially trees. MicroRNAs (miRNAs) are a class of non-coding RNAs approximately 21 nucleotides in length that play important roles in plant growth, development and stress responses. To identify Populus miRNAs and their functions in response to nutrition stress, high-throughput sequencing was performed using Populus tomentosa plantlets treated with or without low concentrations of N. We identified 160 conserved miRNAs, 15 known but non-conserved miRNAs, 2 candidate novel miRNAs and 71 corresponding miRNA*s. Differential expression analysis showed that expression of the 21 conserved miRNA families was significantly altered. Real-time quantitative PCR (qPCR) was used to further validate and analyze the dynamic expression of the identified miRNAs. A total of 218 target genes from the low-N-responsive miRNAs were predicted, and their functions were further annotated in combination with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. These results suggest that miRNAs play important roles in the response of Populus to low N stress. Furthermore, this study provides the first identification and profiles of N stress-responsive miRNAs from trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  • Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986–995

    CAS  PubMed  Google Scholar 

  • Aung K, Lin SI, Wu CC, Huang YT, Su CL, Chiou TJ (2006) pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol 141:1000–1011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barakat A, Wall PK, Diloreto S, Depamphilis CW, Carlson JE (2007) Conservation and divergence of microRNAs in Populus. BMC Genomics 8:481

    Article  PubMed Central  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP, Jones-Rhoades MW (2004) Computational identification of plant MicroRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    Article  PubMed  Google Scholar 

  • Boualem A, Laporte P, Jovanovic M, Laffont C, Plet J, Combier JP, Niebel A, Crespi M, Frugier F (2008) MicroRNA166 controls root and nodule development in Medicago truncatula. Plant J 54:876–887

    Article  CAS  PubMed  Google Scholar 

  • Carnavale-Bottino M, Rosario S, Grativol C, Thiebaut F, Rojas CA, Farrineli L, Hemerly AS, Ferreira PC (2013) High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane. PLoS One 8:e59423

    Article  PubMed Central  PubMed  Google Scholar 

  • Cassman KG, Kropf MJ, Gaunt J, Peng S (1993) Nitrogen use efficiency of rice reconsidered: what are the key constrains. Plant Soil 155(156):359–362

    Article  Google Scholar 

  • Chen L, Ren Y, Zhang Y, Xu J, Sun F, Zhang Z, Wang Y (2012a) Genome-wide identification and expression analysis of heat-responsive and novel microRNAs in Populus tomentosa. Gene 504:160–165

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Ren Y, Zhang Y, Xu J, Zhang Z, Wang Y (2012b) Genome-wide profiling of novel and conserved Populus microRNAs involved in pathogen stress response by deep sequencing. Planta 235:873–883

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Zhang Y, Ren Y, Xu J, Zhang Z, Wang Y (2012c) Genome-wide identification of cold-responsive and new microRNAs in Populus tomentosa by high-throughput sequencing. Biochem Biophys Res Commun 417:892–896

    Article  CAS  PubMed  Google Scholar 

  • Chiou TJ (2007) The role of microRNAs in sensing nutrient stress. Plant Cell Environ 30:323–332

    Article  CAS  PubMed  Google Scholar 

  • Combier JP, Frugier F, de Billy F, Boualem A, El-Yahyaoui F, Moreau S, Vernié T, Ott T, Gamas P, Crespi M, Niebel A (2006) MtHAP2–1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev 20:3084–3088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crawford NM, Glass ADM (1998) Molecular and physiological aspect of nitrate uptake in plants. Trends Plant Sci 3:389–395

    Article  Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:W155–W159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De-Luis A, Markmann K, Cognat V, Holt DB, Charpentier M, Parniske M, Stougaard J, Voinnet O (2012) Two microRNAs linked to nodule infection and nitrogen-fixing ability in the legume Lotus japonicus. Plant Physiol 160:2137–2154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043

    Article  CAS  PubMed  Google Scholar 

  • Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum KD (2008) Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci U S A 105:803–808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gothandam KM, Kim ES, Cho H, Chung YY (2005) OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis. Plant Mol Biol 58:421–433

    Article  CAS  PubMed  Google Scholar 

  • Hou J, Sun F, Wu Q, Yang Y, He W, Wang Y (2014) An efficient method for total RNA extraction of poplar bark infected with pathogen and the application. Plant Physiol J 50:223–228

    Google Scholar 

  • Jia X, Wang WX, Ren L, Chen QJ, Mendu V, Willcut B, Dinkins R, Tang X, Tang G (2009) Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana. Plant Mol Biol 71:51–59

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev Cell 4:205–217

    Article  CAS  PubMed  Google Scholar 

  • Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kobe B, Kajava AV (2001) The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 11:725–732

    Article  CAS  PubMed  Google Scholar 

  • Kotera E, Tasaka M, Shikanai T (2005) A pentatricopeptide repeat protein is essential for RNA editing in chloroplasts. Nature 433:326–330

    Article  CAS  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  • Li B, Qin Y, Duan H, Yin W, Xia X (2011) Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica. J Exp Bot 62:3765–3779

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liang G, He H, Yu D (2012) Identification of nitrogen starvation-responsive microRNAs in Arabidopsis thaliana. PLoS One 7:e48951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin SI, Chiang SF, Lin WY, Chen JW, Tseng CY, Wu PC, Chiou TJ (2008) Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiol 147:732–746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in Populus. Plant J 55:131–151

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Sun YH, Shi R, Clark C, Li L, Chiang VL (2005) Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lurin C, Andres C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, Caboche M, Debast C, Gualberto J, Hoffmann B, Lecharny A, Le Ret M, Martin-Magniette ML, Mireau H, Peeters N, Renou JP, Szurek B, Taconnat L, Small I (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16:2089–2103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maity SN, de Crombrugghe B (1998) Role of the CCAAT-binding protein CBF/NF-Y in transcription. Trends Biochem Sci 23:174–178

    Article  CAS  PubMed  Google Scholar 

  • Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17:1360–1375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Man MZ, Wang X, Wang Y (2000) POWER_SAGE: comparing statistical tests for SAGE experiments. Bioinformatics 16:953–959

    Article  CAS  PubMed  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK (2008) Criteria for annotation of plant microRNAs. Plant Cell 20:3186–3190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morin RD, O’Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL, Zhao Y, McDonald H, Zeng T, Hirst M, Eaves CJ, Marra MA (2008) Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18:610–621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nischal L, Mohsin M, Khan I, Kardam H, Wadhwa A, Abrol YP, Iqbal M, Ahmad A (2012) Identification and comparative analysis of microRNAs associated with low-N tolerance in rice genotypes. PLoS One 7:e50261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pant BD, Musialak-Lange M, Nuc P, May P, Buhtz A, Kehr J, Walther D, Scheible WR (2009) Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol 150:1541–1555

    Article  PubMed Central  PubMed  Google Scholar 

  • Ren Y, Chen L, Zhang Y, Kang X, Zhang Z, Wang Y (2012) Identification of novel and conserved Populus tomentosa microRNA as components of a response to water stress. Funct Integr Genomics 12:327–339

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Chen L, Zhang Y, Kang X, Zhang Z, Wang Y (2013) Identification and characterization of salt-responsive microRNAs in Populus tomentosa by high-throughput sequencing. Biochimie 95:743–750

    Article  CAS  PubMed  Google Scholar 

  • Rennenberg H, Wildhagen H, Ehlting B (2010) Nitrogen nutrition of poplar trees. Plant Biol (Stuttg) 12:275–291

    Article  CAS  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  CAS  PubMed  Google Scholar 

  • Subramanian S, Fu Y, Sunkar R, Barbazuk WB, Zhu JK, Yu O (2008) Novel and nodulation-regulated microRNAs in soybean roots. BMC Genomics 9:160

    Article  PubMed Central  PubMed  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu JH, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trevisan S, Nonis A, Begheldo M, Manoli A, Palme K, Caporale G, Ruperti B, Quaggiotti S (2012) Expression and tissue-specific localization of nitrate-responsive miRNAs in roots of maize seedlings. Plant Cell Environ 35:1137–1155

    Article  CAS  PubMed  Google Scholar 

  • Valdés-López O, Yang SS, Aparicio-Fabre R, Graham PH, Reyes JL, Vance CP, Hernández G (2010) MicroRNA expression profile in common bean (Phaseolus vulgaris) under nutrient deficiency stresses and manganese toxicity. New Phytol 187:805–818

    Article  PubMed  Google Scholar 

  • Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20:759–771

    Article  CAS  PubMed  Google Scholar 

  • Vidal EA, Araus V, Lu C, Parry G, Green PJ, Coruzzi GM, Gutiérrez RA (2011) Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc Natl Acad Sci USA 107:4477–4482

  • Wang Z, Zou Y, Li X, Zhang Q, Chen L, Wu H, Su D, Chen Y, Guo J, Luo D, Long Y, Zhong Y, Liu YG (2006) Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell 18:676–687

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu Z, Zhong S, Li X, Li W, Rothstein SJ, Zhang S, Bi Y, Xie C (2011) Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots. PLoS One 6:e28009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang B, Pan X, Cobb GP, Anderson TA (2006) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289:3–16

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354:585–590

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Ding H, Zhu JK, Zhang F, Li WX (2011) Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol 190:906–915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao M, Tai H, Sun S, Zhang F, Xu Y, Li WX (2012) Cloning and characterization of maize miRNAs involved in responses to nitrogen deficiency. PLoS One 7:e29669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao Y, Xu Z, Mo Q, Zou C, Li W, Xu Y, Xie C (2013) Combined small RNA and degradome sequencing reveals novel miRNAs and their targets in response to low nitrate availability in maize. Ann Bot 112:633–642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou ZS, Zeng HQ, Liu ZP, Yang ZM (2012) Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal. Plant Cell Environ 35:86–99

    Article  PubMed  Google Scholar 

  • Zhu JK, Li WX, Oono Y, Zhu JH, He XJ, Wu JM, Iida K, Lu XY, Cui XP, Jin HL (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20:2238–2251

    Article  PubMed Central  PubMed  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20110014120004), the Fundamental Research Funds for Central Universities (No. TD2012-01) and the National Natural Science Foundation of China (No. 31200511). We thank Professor Xia Li at the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, for reading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanwei Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(PDF 287 kb)

Fig. S2

(PDF 80.2 kb)

Fig. S3

(PDF 47.6 kb)

Table S1

(DOC 40 kb)

Table S2

(XLS 105 kb)

Table S3

(XLS 22.5 kb)

Table S4

(XLS 42 kb)

Table S5

(XLS 19.5 kb)

Table S6

(XLS 312 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Sun, F., Hou, J. et al. Differential profiling analysis of miRNAs reveals a regulatory role in low N stress response of Populus . Funct Integr Genomics 15, 93–105 (2015). https://doi.org/10.1007/s10142-014-0408-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-014-0408-x

Keywords

Navigation