Skip to main content
Log in

Identification of Potential Antisense Transcripts in Rice Using Conventional Microarray

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Natural antisense transcripts (NATs) are endogenous transcripts that contain reverse complementary sequences to other RNAs (usually called sense transcripts). NATs regulate the expression of sense transcripts in a wide range of species. The identification and analysis of NATs are the prerequisite to elucidate their functions. Microarray is a genome-wide method to detect gene expression. However, conventional microarrays do not contain the specific probes of NATs; thus, they cannot be utilized to detect NATs. In this article, we developed a novel method to identify potential NATs with the conventional microarrays. In this method of our study, we labeled the first strand cDNA from one sample with Cy5 and labeled the second strand cDNA from another sample with Cy3, and then hybridized these labeled samples with oligonucleotide microarray. Using this method, we identified 920 potential NATs in rice variety Nipponbare. Among these potential NATs, 88 of them were confirmed by either full-length cDNA or orientated ESTs (expressed sequence tags). This is the first time that a conventional oligonucleotide microarray was employed to identify NATs in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lapidot, M., & Pilpel, Y. (2006). Genome-wide natural antisense transcription: Coupling its regulation to its different regulatory mechanisms. EMBO Reports, 7, 1216–1222.

    Article  CAS  Google Scholar 

  2. Lavorgna, G., Dahary, D., Lehner, B., Sorek, R., Sanderson, C. M., & Casari, G. (2004). In search of antisense. Trends in Biochemical Sciences, 29, 88–94.

    Article  CAS  Google Scholar 

  3. Faghihi, M. A., & Wahlestedt, C. (2009). Regulatory roles of natural antisense transcripts. Nature Reviews Molecular Cell Biology, 10, 637–643.

    Article  CAS  Google Scholar 

  4. Williams, T., & Fried, M. (1986). A mouse locus at which transcription from both DNA strands produces mRNAs complementary at their 3’ ends. Nature, 322, 275–279.

    Article  CAS  Google Scholar 

  5. Katayama, S., Tomaru, Y., Kasukawa, T., Waki, K., Nakanishi, M., Nakamura, M., et al. (2005). Antisense transcription in the mammalian transcriptome. Science (New York, NY), 309, 1564–1566.

    Article  Google Scholar 

  6. Osato, N., Yamada, H., Satoh, K., Ooka, H., Yamamoto, M., Suzuki, K., et al. (2003). Antisense transcripts with rice full-length cDNAs. Genome Biology, 5, R5.

    Article  Google Scholar 

  7. Yelin, R., Dahary, D., Sorek, R., Levanon, E. Y., Goldstein, O., Shoshan, A., et al. (2003). Widespread occurrence of antisense transcription in the human genome. Nature Biotechnology, 21, 379–386.

    Article  CAS  Google Scholar 

  8. Galante, P. A., Vidal, D. O., de Souza, J. E., Camargo, A. A., & de Souza, S. J. (2007). Sense–antisense pairs in mammals: Functional and evolutionary considerations. Genome Biology, 8, R40.

    Article  Google Scholar 

  9. Chen, J., Sun, M., Kent, W. J., Huang, X., Xie, H., Wang, W., et al. (2004). Over 20% of human transcripts might form sense–antisense pairs. Nucleic Acids Research, 32, 4812–4820.

    Article  CAS  Google Scholar 

  10. Rosok, O., & Sioud, M. (2004). Systematic identification of sense–antisense transcripts in mammalian cells. Nature Biotechnology, 22, 104–108.

    Article  CAS  Google Scholar 

  11. Hoheisel, J. D. (2006). Microarray technology: Beyond transcript profiling and genotype analysis. Nature Reviews, 7, 200–210.

    Article  CAS  Google Scholar 

  12. Vallon-Christersson, J., Staaf, J., Kvist, A., Medstrand, P., Borg, A., & Rovira, C. (2007). Non-coding antisense transcription detected by conventional and single-stranded cDNA microarray. BMC Genomics, 8, 295.

    Article  Google Scholar 

  13. Kiyosawa, H., Mise, N., Iwase, S., Hayashizaki, Y., & Abe, K. (2005). Disclosing hidden transcripts: Mouse natural sense–antisense transcripts tend to be poly(A) negative and nuclear localized. Genome Research, 15, 463–474.

    Article  CAS  Google Scholar 

  14. Numata, K., Osada, Y., Okada, Y., Saito, R., Hiraiwa, N., Nakaoka, H., et al. (2009). Identification of novel endogenous antisense transcripts by DNA microarray analysis targeting complementary strand of annotated genes. BMC Genomics, 10, 392.

    Article  Google Scholar 

  15. Werner, A., Schmutzler, G., Carlile, M., Miles, C. G., & Peters, H. (2007). Expression profiling of antisense transcripts on DNA arrays. Physiological Genomics, 28, 294–300.

    Article  CAS  Google Scholar 

  16. Ge, X., Rubinstein, W. S., Jung, Y. C., & Wu, Q. (2008). Genome-wide analysis of antisense transcription with Affymetrix exon array. BMC Genomics, 9, 27.

    Article  Google Scholar 

  17. Coram, T. E., Settles, M. L., & Chen, X. (2009). Large-scale analysis of antisense transcription in wheat using the Affymetrix GeneChip Wheat Genome Array. BMC Genomics, 10, 253.

    Article  Google Scholar 

  18. Ma, L., Chen, C., Liu, X., Jiao, Y., Su, N., Li, L., et al. (2005). A microarray analysis of the rice transcriptome and its comparison to Arabidopsis. Genome Research, 15, 1274–1283.

    Article  CAS  Google Scholar 

  19. Wei, G., Tao, Y., Liu, G., Chen, C., Luo, R., Xia, H., et al. (2009). A transcriptomic analysis of superhybrid rice LYP9 and its parents. Proceedings of the National Academy of Sciences of the United States of America, 106, 7695–7701.

    Article  CAS  Google Scholar 

  20. Gan, Q., Bai, H., Zhao, X., Tao, Y., Zeng, H., Han, Y., et al. (2011). Transcriptional characteristics of Xa21-mediated defense responses in rice. Journal of Integrative Plant Biology, 53(4), 300–311.

    Article  CAS  Google Scholar 

  21. Moriguchi, K., Suzuki, T., Ito, Y., Yamazaki, Y., Niwa, Y., & Kurata, N. (2005). Functional isolation of novel nuclear proteins showing a variety of subnuclear localizations. The Plant Cell, 17, 389–403.

    Article  CAS  Google Scholar 

  22. Redon, R., Ishikawa, S., Fitch, K. R., Feuk, L., Perry, G. H., Andrews, T. D., et al. (2006). Global variation in copy number in the human genome. Nature, 444, 444–454.

    Article  CAS  Google Scholar 

  23. McCarroll, S. A., & Altshuler, D. M. (2007). Copy-number variation and association studies of human disease. Nature Genetics, 39, S37–S42.

    Article  CAS  Google Scholar 

  24. Lakshmi, B., Hall, I. M., Egan, C., Alexander, J., Leotta, A., Healy, J., et al. (2006). Mouse genomic representational oligonucleotide microarray analysis: Detection of copy number variations in normal and tumor specimens. Proceedings of the National Academy of Sciences of the United States of America, 103, 11234–11239.

    Article  CAS  Google Scholar 

  25. Perocchi, F., Xu, Z., Clauder-Munster, S., & Steinmetz, L. M. (2007). Antisense artifacts in transcriptome microarray experiments are resolved by actinomycin D. Nucleic Acids Research, 35, e128.

    Article  Google Scholar 

  26. Grigoriadis, A., Oliver, G. R., Tanney, A., Kendrick, H., Smalley, M. J., Jat, P., et al. (2009). Identification of differentially expressed sense and antisense transcript pairs in breast epithelial tissues. BMC Genomics, 10, 324.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Cindy Lim, Vuong Tran, Lama Tarayrah, and Andrew Mo for their critical readings and suggestions on the manuscript. This project was funded by grants from the Natural Science Foundation of China to LZ (3073007), GL (30670175), the National Key Basic Research Science Foundation of China to LZ (2006CB101904), GL (2007109201), and the Chinese Academy of Sciences to LZ (KSCX2-YW-N-005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guozhen Liu or Lihuang Zhu.

Additional information

Q. Gan and D. Li contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12033_2011_9438_MOESM1_ESM.xls

Additional file 1: The list of 33,371 oligos that were uniquely matched to japonica known and predicted gene models. Additional file 2: The list of probes with high signal in both first and second strand cDNA-labeled samples. Additional file 3: The list of 30 potential NATs that were confirmed by genes or full-length cDNAs. Additional file 4: The list of 58 potential NATs that were confirmed by orientated ESTs. Additional file 5: The signal of oligoID_01 in first strand cDNA and oligoID_02 in second strand cDNA for the 392 oligo-pairs. The top 24 oligo-pairs have at least one oligo expressed in either the first or second strand cDNA samples. Additional file 6: The list of 12 oligos and their primers that were analyzed by RT-PCR. (XLS 6231 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gan, Q., Li, D., Liu, G. et al. Identification of Potential Antisense Transcripts in Rice Using Conventional Microarray. Mol Biotechnol 51, 37–43 (2012). https://doi.org/10.1007/s12033-011-9438-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-011-9438-y

Keywords

Navigation