Skip to main content
Log in

Construction of a fosmid library of cucumber (Cucumis sativus) and comparative analyses of the eIF4E and eIF(iso)4E regions from cucumber and melon (Cucumis melo)

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

A fosmid library of cucumber was synthesized as an unrestricted resource for researchers and used for comparative sequence analyses to assess synteny between the cucumber and melon genomes, both members of the genus Cucumis and the two most economically important plants in the family Cucurbitaceae. End sequencing of random fosmids produced over 680 kilobases of cucumber genomic sequence, of which 25% was similar to ribosomal DNAs, 25% to satellite sequences, 20% to coding regions in other plants, 4% to transposable elements, 13% to mitochondrial and chloroplast sequences, and 13% showed no hits to the databases. The relatively high frequencies of ribosomal and satellite DNAs are consistent with previous analyses of cucumber DNA. Cucumber fosmids were selected and sequenced that carried eukaryotic initiation factors (eIF) 4E and iso(4E), genes associated with recessively inherited resistances to potyviruses in a number of plants. Indels near eIF4E and eIF(iso)4E mapped independently of the zym, a recessive locus conditioning resistance to Zucchini yellow mosaic virus, establishing that these candidate genes are not zym. Cucumber sequences were compared with melon BACs carrying eIF4E and eIF(iso)4E and revealed extensive sequence conservation and synteny between cucumber and melon across these two independent genomic regions. This high degree of microsynteny will aid in the cloning of orthologous genes from both species, as well as allow for genomic resources developed for one Cucumis species to be used for analyses in other species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O’Donovan C, Redaschi N, Yeh LS (2004) UniProt: the universal protein knowledgebase. Nucleic Acids Res 32:D115–D119

    Article  PubMed  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2004) Angiosperm DNA C-values database (release 5.0). http://www.rbgkew.org.uk/cval/homepage.html (verified June 2007)

  • Brudno M, Do CB, Cooper GM, Kim MF, Davydov E, Green ED, Sidow A, Batzoglou S (2003) NISC comparative sequencing program. LAGAN and Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic DNA. Genome Res 13:721–731

    Article  PubMed  CAS  Google Scholar 

  • Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268:78–94

    Article  PubMed  CAS  Google Scholar 

  • Danin-Poleg Y, Reis N, Baudraco-Arnas S, Pitrat M, Staub J, Oliver M, Arus P, deVicente C, Katzir N (2000) Simple sequence repeats in Cucumis mapping and map merging. Genome 43:963–974

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Pendón JA, Truniger V, Nieto C, García-Mas J, Bendahmane A, Aranda MA (2004) Advances in understanding recessive resistance to plant viruses. Mol Plant Pathol 5:223–233

    Article  Google Scholar 

  • Dijkhuizen A, Kennard WC, Havey MJ, Staub JE (1996) RFLP variability and genetic relationships in cultivated cucumber. Euphytica 90:79–87

    Google Scholar 

  • Duprat A, Caranta C, Revers F, Menand B, Browning KS, Robaglia C (2002) The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J 32:927–934

    Article  PubMed  CAS  Google Scholar 

  • Ganal M, Hemleben V (1988) Insertion and amplification of a DNA sequence in satellite DNA of Cucumis sativus L. (cucumber). Theor Appl Genet 75:357–361

    Article  CAS  Google Scholar 

  • Ganal M, Riede I, Hembelen V (1986) Organization and sequence analyses of two related satellite DNAs in cucumber (Cucumis sativus L.). J Mol Evol 23:23–30

    Article  CAS  Google Scholar 

  • Gonzalo M, Oliver M, Garcia-Mas J, Monfort A, Dolcet-Sanjuan R, Katzir N, Arús P, Monforte A (2005) Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.). Theor Appl Genet 110:802–811

    Article  PubMed  CAS  Google Scholar 

  • Grumet R, Kabelka E, McQueen S, Wai T, Humphrey R (2000) Characterization of sources of resistance to the watermelon strain of papaya ringspot virus in cucumber: allelism and co-segregation with other potyvirus resistances. Theor Appl Genet 101:463–472

    Article  Google Scholar 

  • Hemleben V, Leweke B, Roth A, Stadler J (1982) Organization of highly repetitive satellite DNA of two Cucurbitaceae species (Cucumis melo and Cucumis sativus). Nucleic Acids Res 10:631–644

    Article  PubMed  CAS  Google Scholar 

  • Hoshi Y, Plader W, Malepszy S (1999) Physical mapping of 45s rRNA gene loci in cucumber (Cucumis sativus L.) using fluorescence in situ hybridization. Caryologia 52:49–57

    Google Scholar 

  • Kabelka E, Ullah Z, Grumet R (1997) Multiple alleles for zucchini yellow mosaic virus resistance at the zym locus in cucumber. Theor Appl Genet 95:997–1004

    Article  CAS  Google Scholar 

  • Kang B, Yeam I, Frantz J, Murphy J, Jahn M (2005) The pvr1 locus in Capsicum encodes a translation initiation factor eIF4E that interacts with Tobacco etch virus VPg. Plant J 42:392–405

    Article  PubMed  CAS  Google Scholar 

  • Kanyuka K, Druka A, Caldwell DG, Tymon A, McCallum N, Waugh R, Adams M (2005) Evidence that the recessive Bymovirus resistance locus rym4 in barley corresponds to the eukaryotic translation initiation factor 4E gene. Mol Plant Pathol 6:449–445

    Article  CAS  Google Scholar 

  • Katzir N, Danin-Poleg Y, Tzuri G, Karchi Z, Lavi U, Cregan P (1996) Length polymorphism and homologies of microsatellites in several Cucurbitaceae species. Theor Appl Genet 93:1282–1290

    Article  CAS  Google Scholar 

  • Keller B, Feuillet C (2000) Colinearity and gene density in grass genomes. Trends Plant Sci 5:246–251

    Article  PubMed  CAS  Google Scholar 

  • Kennard WK, Poetter K, Dijkhuizen A, Meglic V, Staub JE, Havey MJ (1994) Linkages among RFLP, RAPD, isozyme, disease resistance, and morphological markers in narrow and wide crosses of cucumber. Theor Appl Genet 89:42–48

    CAS  Google Scholar 

  • Kirkbride J (1993) Biosystematic monograph of the genus Cucumis (Cucurbitaceae). Parkway, Boone, North Carolina. 159 pp

  • Luis L, Alvarez J, Alonso P, Bernal J, Garcia A, Lavina A, Batlle A (1998) Occurrence, distribution, and relative incidence of mosaic viruses infecting field-grown melon in Spain. Plant Dis 82:979–982

    Article  Google Scholar 

  • Luo M, Wang Y, Frisch D, Joobeur T, Wing R, Dean R (2001) Melon bacterial artificial chromosome (BAC) library construction using improved methods and identification of clones linked to the locus conferring resistance to melon Fusarium wilt (Fom-2). Genome 44:154–162

    Article  PubMed  CAS  Google Scholar 

  • Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  PubMed  CAS  Google Scholar 

  • Maule AJ, Caranta C, Boulton M (2007) Sources of natural resistance to plant viruses: status and prospects. Mol Plant Path 8:223–231

    Article  CAS  Google Scholar 

  • Nam Y, Lee J, Song K, Lee M, Robbins M, Chung S, Staub J, Zhang H (2005) Construction of two BAC libraries from cucumber (Cucumis sativus L.) and identification of clones linked to yield component quantitative trait loci. Theor Appl Genet 111:150–161

    Article  PubMed  CAS  Google Scholar 

  • Neuhausen S (1992) Evaluation of restriction fragment length polymorphism in Cucumis melo. Theor Appl Genet 83:379–384

    Article  Google Scholar 

  • Nicaise V, German-Retana S, Sanjuan R, Dubrana M, Mazier M, Maisonneuve B, Candresse T, Caranta C, LeGall O (2003) The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the potyvirus Lettuce mosaic virus. Plant Physiol 132:1272–1282

    Article  PubMed  CAS  Google Scholar 

  • Nieto C, Morales M, Orjeda G, Clepet C, Monfort A, Sturbois B, Puigdomenech P, Pitrat M, Caboche M, Dogimont C, García-Mas J, Aranda M, Bendahmane A (2006) An eIF4E allele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. Plant J 48:452–462

    Article  PubMed  CAS  Google Scholar 

  • Park Y, Katzir N, Brotman Y, King J, Bertrand F, Havey M (2004) Comparative mapping of ZYMV resistances in cucumber (Cucumis sativus L.) and melon (Cucumis melo L.). Theor Appl Genet 109:707–712

    Article  PubMed  CAS  Google Scholar 

  • Park Y, Sensoy S, Wye C, Antonise R, Peleman J, Havey M (2000) A genetic map of cucumber composed of RAPDs, RFLPs, AFLP markers and loci conditioning resistance to papaya ringspot an zucchini yellow mosaic viruses. Genome 43:1003–1010

    Article  PubMed  CAS  Google Scholar 

  • Paterson A, Bowers J, Burow M, Draye X, Eisik C, Jiang C, Katsar C, Land T, Lin Y, Ing R, Wright R (2000) Comparative genomics of plant chromosomes. Plant Cell 12:1523–1539

    Article  PubMed  CAS  Google Scholar 

  • Provvidenti R (1987) Inheritance of resistance to a strain of zucchini yellow mosaic virus in cucumber. Hortscience 22:102–103

    Google Scholar 

  • Provvidenti R, Gonsalves D, Humaydan H (1984) Occurrence of zucchini yellow mosaic virus in cucurbits from Connecticut, New York, Florida, and California. Plant Dis 68:443–446

    Article  Google Scholar 

  • Ramachandran C, Brandenburg W, den Nijs A (1985) Intraspecific variation in C-banded karyotype and chiasma frequency in Cucumis sativus (Cucurbitaceae). Plant Syst Evol 151:31–41

    Article  Google Scholar 

  • Robaglia C, Caranta C (2006) Translation initiation factors: a weak link in plant virus infection. Trends Plant Sci 11:40–45

    Article  PubMed  CAS  Google Scholar 

  • Robinson R, Decker-Walters D (1997) Cucurbits. CAB International, New York, 226 p

    Google Scholar 

  • Ruffel S, Dussault M, Palloix A, Moury B, Bendahmane A, Robaglia C, Caranta C (2002) A natural recessive resistance gene against Potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant J 32:1067–1075

    Article  PubMed  CAS  Google Scholar 

  • Ruffel S, Caranta C, Palloix A, Lefebvre V, Caboche M, Bendahmane A (2004) Structural analysis of the eukaryotic initiation factor 4E gene controlling potyvirus resistance in pepper: exploitation of a BAC library. Gene 338:209–216

    Article  PubMed  CAS  Google Scholar 

  • Ruffel S, Gallois JL, Lesage ML, Caranta C (2005) The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-eIF4E gene. Mol Genet Genomics 274:346–353

    Article  PubMed  CAS  Google Scholar 

  • Ruffel S, Gallois JL, Moury B, Robaglia C, Palloix A, Caranta C (2006) Simultaneous mutations in translation initiation factors elF4E and elF(iso)4E are required to prevent Pepper veinal mottle virus infection of pepper. J Gen Virol 87:2089–2098

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Nakahara K, Yoshii M, Ishikawa M, Uyeda I (2005) Selective involvement of members of the eukaryotic initiation factor 4E family in the infection of Arabidopsis thaliana by potyviruses. FEBS Lett 579:1167–1171

    Article  PubMed  CAS  Google Scholar 

  • Stein N, Perovic D, Kumlehn J, Pellio B, Stracke S, Streng S, Ordon F, Graner A (2005) The eukaryotic translation initiation factor 4E confers multiallelic recessive Bymovirus resistance in Hordeum vulgare (L.). Plant J 42:912–922

    Article  PubMed  CAS  Google Scholar 

  • Tatusova T, Madden T (1999) Blast 2 sequences—a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174:247–250

    Article  PubMed  CAS  Google Scholar 

  • Wai T, Staub J, Grumet R (1997) Linkage analysis of potyvirus resistance alleles in cucumber. J Hered 88:454–458

    Google Scholar 

  • Wang Y, Provvidenti R, Robinson R (1984) Inheritance of resistance of watermelon moaic 1 virus in cucumber. Hortscience 19:587–588

    Google Scholar 

  • Yeh R F, Lim LP, Burge CB (2001) Computational inference of homologous gene structures in the human genome. Genome Res 11:803–816

    Article  PubMed  CAS  Google Scholar 

  • Yuki V, Rezende J, Kitajima E, Barroso P, Kuniyuki H, Groppo G, Pavan M (2000) Occurrence, distribution, and relative incidence of five viruses infecting cucurbits in the state of Sao Paulo, Brazil. Plant Dis 84:516–520

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of USDA-CSREES-NRI grant 2003-35300-13204 and technical assistance of Emily Haack, John Piekarski, and Amy Stein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Havey.

Additional information

Communicated by Y. Van den Peer.

Names are necessary to report factually on available data; however, the US Department of Agriculture (USDA) neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, J.D.F., Deleu, W., Garcia-Mas, J. et al. Construction of a fosmid library of cucumber (Cucumis sativus) and comparative analyses of the eIF4E and eIF(iso)4E regions from cucumber and melon (Cucumis melo). Mol Genet Genomics 279, 473–480 (2008). https://doi.org/10.1007/s00438-008-0326-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-008-0326-5

Keywords

Navigation