Skip to main content
Log in

Origin and differentiation of nephridia in the Onychophora provide no support for the Articulata

  • Original Article
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

Comparative morphology currently permits no unambiguous decision on the primary homology of the nephridia of Annelida and Arthropoda. In order to obtain additional information on this subject, ultrastructure of morphogenesis and further differentiation of nephridia was studied in the onychophoran Epiperipatus biolleyi (Peripatidae). In this species, the nephridial anlage develops by reorganization of the lateral portion of the embryonic coelomic wall that initially gives rise to a ciliated canal. All other structural components, including the sacculus, merge after the nephridial anlage has been separated from the remaining mesodermal tissue. The nephridial sacculus does not represent a ‘persisting coelomic cavity’, since it arises de novo during embryogenesis. There is no evidence for ‘nephridioblast‘ cells participating in the nephridiogenesis of Onychophora, which is in contrast to the general mode of nephridial formation in Annelida. Available data on nephridiogenesis in euarthropods (Chelicerata, Myriapoda, Crustacea, and Hexapoda) also provide no evidence for nephridia of Annelida and Arthropoda being a synapomorphy of these taxa. These findings accordingly weaken the traditional Articulata hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguinaldo AMA, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493

    Article  PubMed  CAS  Google Scholar 

  • Anderson DT (1973) Embryology and phylogeny in annelids and arthropods. Pergamon Press, Oxford

    Google Scholar 

  • Ax P (1996) Multicellular animals. A new approach to the phylogenetic order in nature, vol 1. Springer, Berlin Heidelberg New York

  • Ax P (2000) Multicellular animals. The phylogenetic system of the metazoa, vol 2. Springer, Berlin Heidelberg New York

  • Bahl KN (1922) On the development of the ‘enteronephric’ type of nephridial system in earthworms of the genus Pheretima. Q J Microsc Sci 68:67–99

    Google Scholar 

  • Balavoine G, Adoutte A (2003) The segmented Urbilateria: a testable scenario. Integr Comp Biol 43:137–147

    Google Scholar 

  • Bartolomaeus T (1989) Ultrastructure and development of the nephridia in Anaitides mucosa (Annelida, Polychaeta). Zoomorphology 109:15–32

    Article  Google Scholar 

  • Bartolomaeus T (1997) Structure and development of the nephridia of Tomopteris helgolandica (Annelida). Zoomorphology 117:1–11

    Article  Google Scholar 

  • Bartolomaeus T (1999) Structure, function and development of segmental organs in Annelida. Hydrobiologia 402:21–37

    Article  Google Scholar 

  • Bartolomaeus T, Ax P (1992) Protonephridia and metanephridia - their relation within the Bilateria. Z zool Syst Evolutionsforsch 30:21–45

    Article  Google Scholar 

  • Bartolomaeus T, Quast B (2005) Structure and development of nephridia in Annelida and related taxa. Hydrobiologia 535/536:139–164

    Article  Google Scholar 

  • Bartolomaeus T, Ruhberg H (1999) Ultrastructure of the body cavity lining in embryos of Epiperipatus biolleyi (Onychophora, Peripatidae) - a comparison with annelid larvae. Invertebr Biol 118:165–174

    Google Scholar 

  • Benesch R (1969) Zur Ontogenie und Morphologie von Artemia salina L. Zool Jb Anat 86:307–458

    Google Scholar 

  • Bergh RS (1898) Nochmals über die Entwicklung der Segmentalorgane. Z wiss Zool 66:435–449

    Google Scholar 

  • Boore JL, Brown WM (2000) Mitochondrial genomes of Galathealinum, Helobdella, and Platynereis: sequence and gene arrangement comparisons indicate that Pogonophora is not a phylum and Annelida and Arthropoda are not sister taxa. Mol Biol Evol 17:87–106

    PubMed  CAS  Google Scholar 

  • Brauer A (1895) Beiträge zur Kenntnis der Entwicklungsgeschichte des Skorpions. II. Z wiss Zool 59:351–433

    Google Scholar 

  • Brusca C, Brusca GJ (2003) Invertebrates, 2nd edn. Sinauer Association, Sunderland

    Google Scholar 

  • Budd G (2001) Why are arthropods segmented? Evol Dev 3:332–342

    Article  PubMed  CAS  Google Scholar 

  • Bunke D (2003) Early development of metanephridia in the caudal budding zone of a clitellate annelid, Dero digitata (Naidida): an electron-microscopical study. Acta Zool 84:87–97

    Article  Google Scholar 

  • Buxton BH (1917) Notes on the anatomy of arachnids. The coxal glands of the arachnids. The ganglia of the arachnids. J Morphol 29:1–25

    Article  Google Scholar 

  • Dohle W (1979) Vergleichende Entwicklungsgeschichte des Mesoderms bei Articulaten. In: Siewing R (ed) Ontogenese und Phylogenese - Erlanger Symposium für Strukturanalyse und Evolutionsforschung, 3.-6. Oktober 1977, Fortschritte in der Zoologischen Systematik und Evolutionsforschung. Paul Parey, Hamburg, pp 120–140

  • Dohle W (1980) Sind die Myriapoden eine monophyletische Gruppe? Abh Naturwiss Ver Hamburg 23:45–104

    Google Scholar 

  • Dohle W (1996) Antennata (Tracheata, Monoantennata, Atelocerata). In: Westheide W, Rieger R (eds) Spezielle Zoologie, Teil 1: Einzeller und Wirbellose Tiere. Gustav Fischer, Stuttgart, pp 582–600

    Google Scholar 

  • Dove H, Stollewerk A (2003) Comparative analysis of neurogenesis in the myriapod Glomeris marginata (Diplopoda) suggests more similarities to chelicerates than to insects. Development 130:2161–71

    Article  PubMed  CAS  Google Scholar 

  • Dunger W (1993) Überklasse Antennata. In: Gruner H-E (ed) Lehrbuch der Speziellen Zoologie, Band I: Wirbellose Tiere. 4.Teil: Arthropoda (ohne Insecta). Gustav Fischer, Stuttgart, pp 1031–1159

    Google Scholar 

  • Evans R (1901) On the Malayan species of Onychophora. Part II. - The development of Eoperipatus weldoni. Q J Microsc Sci 45:41–88

    Google Scholar 

  • Feustel H (1958) Untersuchungen über die Exkretion bei Collembolen (Ein Beitrag zur Exkretion bei Arthropoden). Z wiss Zool 161:209–238

    Google Scholar 

  • François J (1969) Anatomie et morphologie céphalique des Protoures (Insecta Apterigota). Mém Mus Nat Hist Nat Paris 49:1–144

    Google Scholar 

  • François J, Dallai R (1986) Ultrastructure des glandes maxillaires d′Acerentomon affine Bagn. et d′Eosentomon transitorium Berl. (Apterygota: Protura). Int J Insect Morphol Embr 15:201–212

    Article  Google Scholar 

  • Friedrich M, Tautz D (1995) Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods. Nature 376:165–167

    Article  PubMed  CAS  Google Scholar 

  • Giribet G (2003) Molecules, development and fossils in the study of metazoan evolution; Articulata versus Ecdysozoa revisited. Zoology 106:303–326

    Article  PubMed  CAS  Google Scholar 

  • Giribet G, Richter S, Edgecombe GD, Wheeler WC (2005) The position of crustaceans within the arthropoda—evidence from nine molecular loci and morphology. In: Koenemann S, Jenner RA (eds) Crustacea and Arthropod relationships. CRC Press, Boca Raton, pp 307–352

    Google Scholar 

  • Glen EH (1918) A revision of certain points in the early development of Peripatus capensis. Q J Microsc Sci 63:283–292

    Google Scholar 

  • Goodrich ES (1895) On the coelom, genital ducts, and nephridia. Q J Microsc Sci 37:477–508

    Google Scholar 

  • Goodrich ES (1932) On the nephridiostome of Lumbricus. Q J Microsc Sci 75:165–179

    Google Scholar 

  • Goodrich ES (1945) The study of nephridia and genital ducts since 1895. Q J Microsc Sci 86:113–392

    Google Scholar 

  • Haase A, Stern M, Wächtler K, Bicker G (2001) A tissue-specific marker of Ecdysozoa. Dev Genes Evol 211:428–433

    Article  PubMed  CAS  Google Scholar 

  • Harzsch S (2004) Phylogenetic comparison of serotonin-immunoreactive neurons in representatives of the Chilopoda, Diplopoda, and Chelicerata: implications for arthropod relationships. J Morphol 259:198–213

    Article  PubMed  CAS  Google Scholar 

  • Harzsch S, Müller CHG, Wolf H (2005) From variable to constant cell numbers: cellular characteristics of the arthropod nervous system argue against a sistergroup relationship of Chelicerata and “Myriapoda” but favour the Mandibulata concept. Dev Genes Evol 215:53–68

    Article  PubMed  Google Scholar 

  • Haupt J (1969) Zur Feinstruktur der Labialniere des Silberfischchens Lepisma saccharina L. (Thysanura, Insecta). Zool Beitr 15:139–170

    Google Scholar 

  • Hessler RR, Elofsson R (1991) The excretory system of Hutchinsoniella macracantha (Crustacea: Cephalocarida). J Crust Biol 11:356–367

    Google Scholar 

  • Heymons R (1901) Die Entwicklungsgeschichte der Scolopender. Zoologica 33:1–244

    Google Scholar 

  • Hwang UW, Friedrich M, Tautz D, Park CJ, Kim W (2001) Mitochondrial protein phylogeny joins myriapods with chelicerates. Nature 413:154–157

    Article  PubMed  CAS  Google Scholar 

  • Jenner RA, Scholtz G (2005) Playing another round of metazoan phylogenetics: Historical epistemology, sensitivity analysis, and the position of Arthropoda within the Metazoa on the basis of morphology. In: Koenemann S, Jenner RA (eds) Crustacea and Arthropod relationships. CRC Press, Boca Raton, pp 355–385

    Google Scholar 

  • Johannsen O, Butt FH (1941) Embryology of insects and myriapods. McGraw-Hill Book Company, New York

    Google Scholar 

  • Kadner D, Stollewerk A (2004) Neurogenesis in the chilopod Lithobius forficatus suggests more similarities to chelicerates that to insects. Dev Genes Evol 214:367–79

    Article  PubMed  CAS  Google Scholar 

  • Kennel J von (1888) Entwicklungsgeschichte von Peripatus edwardsii Blanch. und Peripatus torquatus n.sp. II. Theil. Arbeiten aus dem Zoologisch-Zootomischen Institut in Würzburg 8:1–93

    Google Scholar 

  • Kingsley JS (1885) Notes on the embryology of Limulus. Q J Microsc Sci 25:521–576

    Google Scholar 

  • Kingsley JS (1893) The embryology of Limulus—Part II. J Morphol 8:195–268

    Article  Google Scholar 

  • Kitamura K, Shimizu T (2000a) Embryonic expression of alkaline phosphatase activity in the oligochaete annelid Tubifex. Invertebr Reprod Dev 37:69–73

    CAS  Google Scholar 

  • Kitamura K, Shimizu T (2000b) Analyses of segment specific expression of alkaline phosphatase activity in the mesoderm of the oligochaete annelid Tubifex: implication for specification of segmental identity. Dev Biol 219:214–223

    Article  PubMed  CAS  Google Scholar 

  • Klausnitzer B (1996) Insecta (Hexapoda), Insekten. In: Westheide W, Rieger R (eds) Spezielle Zoologie, Teil 1: Einzeller und Wirbellose Tiere. Gustav Fischer, Stuttgart, pp 601–681

    Google Scholar 

  • Lavallard R, Campiglia S (1983) Sur la ciliature des nephridies chez Peripatus acacioi Marcus et Marcus (Onychophora: Peripatidae). Arch d’Anat Microsc Morphol Exp 72:183–197

    Google Scholar 

  • Lebedinsky J (1892) Die Entwicklung der Coxaldrüsen bei Phalangium. Zool Anz 15:131–137

    Google Scholar 

  • Lillie RS (1905) The structure and development of the nephridia of Arenicola cristata Stimpson. Mitt Zool Neapel 17:341–405

    Google Scholar 

  • Mallatt J, Winchell CJ (2002) Testing the new animal phylogeny: first use of combined large-subunit and small-subunit rRNA gene sequences to classify the protostomes. Mol Biol Evol 19:289–301

    PubMed  CAS  Google Scholar 

  • Mallatt JM, Garey JR, Shultz JW (2004) Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol Phyl Evol 31:178–191

    Article  CAS  Google Scholar 

  • Manton SM (1928) On the embryology of a mysid crustacean, Hemimysis lamornae. Philos Trans R Soc Lond B Biol Sci 216:363–463

    Article  Google Scholar 

  • Manton SM (1934) On the embryology of the crustacean Nebalia bipes. Philos Trans R Soc Lond B Biol Sci 223:163–238

    Google Scholar 

  • Mayer G, Koch M (2005) Ultrastructure and fate of the nephridial anlagen in the antennal segment of Epiperipatus biolleyi (Onychophora, Peripatidae)—evidence for the onychophoran antennae being modified legs. Arthr Str Dev (in press)

  • Mayer G, Ruhberg H, Bartolomaeus T (2004) When an epithelium ceases to exist—An ultrastructural study on the fate of the embryonic coelom in Epiperipatus biolleyi (Onychophora, Peripatidae). Acta Zool 85:163–170

    Article  Google Scholar 

  • Mayer G, Bartolomaeus T, Ruhberg H (2005) Ultrastructure of mesoderm in embryos of Opisthopatus roseus (Onychophora, Peripatopsidae): revision of the “long germ band” hypothesis for Opisthopatus. J Morphol 263:60–70

    Article  PubMed  Google Scholar 

  • Meyer A (1929) Die Entwicklung der Nephridien und Gonoblasten bei Tubifex rivulorum Lam. - nebst Bemerkungen zum natürlichen System der Oligochaeten. Z wiss Zool 98:135–178

    Google Scholar 

  • Moritz M (1959) Zur Embryonalentwicklung der Phalangiiden (Opiliones; Palpatores) II. Die Anlage und Entwicklung der Coxaldrüse bei Phalangium opilio L. Zool Jb Anat 77:229–240

    Google Scholar 

  • Nielsen C (1997) The phylogenetic position of the Arthropoda. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman & Hall, London, pp 11–22

    Google Scholar 

  • Nielsen C (2001) Animal evolution: Interrelationships of the Living Phyla. Oxford University Press, Oxford

    Google Scholar 

  • Okada K (1988) Annelida. In: Kumé M, Dan K (eds) Invertebrate embryology. reprinted by Garland Publishing, New York, pp 192–241

  • Patten WM, Hazen AP (1900) The development of the coxal gland, branchial cartilages, and genital ducts of Limulus polyphemus. J Morphol 16:459–502

    Article  Google Scholar 

  • Penners A (1923) Die Entwicklung des Keimstreifs und die Organbildung bei Tubifex rivulorum Lam. Zool Jb Anat 45:251–308

    Google Scholar 

  • Pflugfelder O (1948) Entwicklung von Paraperipatus amboinensis n. sp. Zool Jb Anat 69:443–492

    Google Scholar 

  • Pflugfelder O (1980) Onychophora. In: Seidel F (ed) Morphogenese der Tiere, 1. Reihe, Lieferung 4. Gustav Fischer, Jena, pp 13–76

    Google Scholar 

  • Philippe H, Lartillot N, Brinkmann H (2005) Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Mol Biol Evol 22:1246–1253

    Article  PubMed  CAS  Google Scholar 

  • Richter S, Scholtz G (2001) Phylogenetic analysis of the Malacostraca (Crustacea). J Zool Syst Evol Res 39:113–136

    Article  Google Scholar 

  • Rouse GW, Fauchald K (1995) The articulation of annelids. Zool Scr 24:269–301

    Article  Google Scholar 

  • Rouse G, Fauchald K (1997) Cladistics and polychaetes. Zool Scr 26:139–204

    Article  Google Scholar 

  • Ruppert EE, Smith PR (1988) The functional organisation of filtration nephridia. Biol Rev 63:231–258

    Google Scholar 

  • Ruppert EE, Fox RS, Barnes RD (2004) Invertebrate biology, 7th edn. Thomson Brooks/Cole, Belmont

    Google Scholar 

  • Schaefer K, Haszprunar G (1997) Anatomy of Laevipilina antarctica, a monoplacophoran limpet (Mollusca) from Antarctic waters. Acta Zool 77:295–314

    Article  Google Scholar 

  • Schmidt-Rhaesa A (2003) Old trees, new trees – is there any progress? Zoology 106:291–301

    Article  PubMed  Google Scholar 

  • Schmidt-Rhaesa A (2004) Ecdysozoa versus Articulata. In: Richter S, Sudhaus W (eds) Sitzungsberichte der Gesellschaft Naturforschender Freunde zu Berlin. Goecke & Evers, Keltern, pp 35–49

    Google Scholar 

  • Schmidt-Rhaesa A, Bartolomaeus T, Lemburg C, Ehlers U, Garey JR (1998) The position of the Arthropoda in the phylogenetic system. J Morphol 238:263–285

    Article  Google Scholar 

  • Schminke HK (1996) Crustacea, Krebse. In: Westheide W, Rieger R (eds) Spezielle Zoologie, Teil 1: Einzeller und Wirbellose Tiere. Gustav Fischer, Stuttgart, pp 501–581

    Google Scholar 

  • Scholl G (1963) Embryologische Untersuchungen an Tanaidaceen (Heterotanais oerstedi Kröyer). Zool Jb Anat 80:500–554

    Google Scholar 

  • Scholl G (1977) Beiträge zur Embryonalentwicklung von Limulus polyphemus L. (Chelicerata, Xiphosura). Zoomorphologie 86:99–154

    Article  Google Scholar 

  • Scholtz G (1997) Cleavage, germ band formation and head segmentation: the ground pattern of the Euarthropoda. In: Fortey RA, Thomas RH (eds) Arthropod Relationships, vol. 24. Chapman & Hall, London, pp 317–332

  • Scholtz G (2002) The Articulata hypothesis - or what is a segment? Org Divers Evol 2:197–215

    Article  Google Scholar 

  • Scholtz G (2003) Is the taxon Articulata obsolete? Arguments in favour of a close relationship between annelids and arthropods. In: Legakis A, Sfenthourakis S, Polymeni R, Thessalou-Legaki M (eds) The new Panorama of animal evolution. Proceedings of the 18th international congress of zoology. Pensoft, Moscow, pp 489–501

  • Seaver, EC (2003) Segmentation: mono- or polyphyletic? Int J Dev Biol 47:583–595

    PubMed  Google Scholar 

  • Sedgwick A (1887) The development of the Cape species of Peripatus. Part III. On the changes from stage A to stage F. Q J Microsc Sci 27:467–550

    Google Scholar 

  • Sedgwick A (1888) The development of the Cape species of Peripatus. Part IV. The changes from stage G to birth. Q J Microsc Sci 28:373–396

    Google Scholar 

  • Seifert G (1979) Considerations about the evolution of excretory organs in terrestrial arthropods. In: Camatini M (ed) Myriapod biology. Academic, London, pp 353–372

    Google Scholar 

  • Sekiguchi K (1988) Arthropoda. II. Arachnida. In: Kumé M, Dan K (eds) Invertebrate Embryology. Reprinted by Garland Publishing, New York, pp 389–404

    Google Scholar 

  • Sheldon L (1887) On the development of Peripatus novae-zealandiae. Q J Microsc Sci 28:205–237

    Google Scholar 

  • Shiino SM (1988) Arthropoda. I. Crustacea. In: Kumé M, Dan K (eds) Invertebrate Embryology. Reprinted by Garland Publishing, New York, pp 333–388

    Google Scholar 

  • Shimizu T, Nakamoto A (2001) Segmentation in annelids: cellular and molecular basis for metameric body plan. Zool Sci 18:285–298

    Article  Google Scholar 

  • Shimizu T, Kitamura K, Arai A, Nakamoto A (2001) Pattern of formation in embryos of the oligochaete annelid Tubifex: cellular basis for segmentation and specification of segmental identity. Hydrobiologia 463:123–131

    Article  Google Scholar 

  • Siewing R (1953) Morphologische Untersuchungen an Tanaidaceen und Lophogastriden. Z wiss Zool 157:333–426

    Google Scholar 

  • Smith PR, Ruppert EE (1988) Nephridia. Micr Mar 4:231–262

    Google Scholar 

  • Staff F (1910) Organogenetische Untersuchungen über Criodrilus lacuum. Arbeiten aus dem Zoologischen Institut der Universität Wien 18:227–256

    Google Scholar 

  • Storch V, Ruhberg H (1993) Onychophora. In: Harrison FW, Rice ME (eds) Microscopic Anatomy of Invertebrates, vol 12. Wiley-Liss, New York, pp 11–56

  • Storch V, Ruhberg H, Alberti G (1978) Zur Ultrastruktur der Segmentalorgane der Peripatopsidae (Onychophora). Zool Jb Anat 100:47–63

    Google Scholar 

  • Sudhaus W, Rehfeld K (1992) Einführung in die Phylogenetik und Systematik. Gustav Fischer, Stuttgart

    Google Scholar 

  • Tiegs OW (1940) The embryology and affinities of the Symphyla, based on a study of Hanseniella agilis. Q J Microsc Sci 82:1–225

    Google Scholar 

  • Tiegs OW (1947) The development and affinities of the Pauropoda, based on a study of Pauropus silvaticus. Part I. Q J Microsc Sci 88:165–267

    CAS  PubMed  Google Scholar 

  • Vanderbroek G (1935) Organogénèse du système néphridien chez les oligochètes et plus spécialement chez Eisenia foetida Sav. Rec Inst Zool Torley-Rousseau 5:5–72

    Google Scholar 

  • Vejdovsky F (1892) Entwicklungsgeschichtliche Untersuchungen (Heft III). Die Organogenie der Oligochaeten. J. Otto, Prag, pp 299–360

    Google Scholar 

  • Wägele J-W (2005) Foundations of Phylogenetic Systematics. Dr Friedrich Pfeil, München

    Google Scholar 

  • Wägele J-W, Misof B (2001) On quality of evidence in phylogeny reconstruction: a reply to Zrzavý’s defence of the “Ecdysozoa” hypothesis. J Zool Syst Evol Res 39:165–176

    Article  Google Scholar 

  • Wägele J-W, Erikson T, Lockhart P, Misof B (1999) The Ecdysozoa: artifact or monophylum? J Zool Syst Evol Res 37:211–223

    Article  Google Scholar 

  • Weygoldt P (1958) Die Embryonalentwicklung des Amphipoden Gammarus pulex pulex (L). Zool Jb Anat 77:51–110

    Google Scholar 

  • Weygoldt P (1964) Vergleichend-embryologische Untersuchungen an Pseudoscorpionen (Chelonethi). Z Morphol Ökol Tiere 54:1–106

    Article  Google Scholar 

  • Weygoldt P (1965) Vergleichend-embryologische Untersuchungen an Pseudoscorpionen. III. Die Entwicklung von Neobisium muscorum Leach (Neobisiinae, Neobisiidae). Mit dem Versuch einer Deutung der Evolution des embryonalen Pumporgans. Z Morphol Ökol Tiere 55:321–382

    Article  Google Scholar 

  • Weygoldt P (1986) Arthropod interrelationships: The phylogenetic-systematic approach. Z zool Syst Evolutionsforsch 24:19–35

    Article  Google Scholar 

  • Weygoldt P (1996) Chelicerata, Spinnentiere. In: Westheide W, Rieger R (eds) Spezielle Zoologie, Teil 1: Einzeller und Wirbellose Tiere. Gustav Fischer, Stuttgart, pp 449–497

    Google Scholar 

  • Wiesenmüller B, Rothe H, Henke W (2003) Phylogenetische systematik. Springer, Berlin Heidelberg New York

    Google Scholar 

  • With C (1904) The Notostigmata, a new suborder of Acari. Vidensk Medd Naturh Foren København 1904:137–192

    Google Scholar 

  • Woodring JP (1973) Comparative morphology, functions, and homologies of the coxal glands in oribatid mites (Arachnida: Acari). J Morphol 139: 407–429

    Article  Google Scholar 

  • Yoshikura M (1955) Embryological studies on the liphistiid spider Heptathela kumurai. II. Kumamoto J Sci B2:1–86

    Google Scholar 

Download references

Acknowledgements

My sincere thanks are expressed to the staff of the Instituto Nacional de Biodiversidad (INBio) in Costa Rica, especially to Alvaro Herrera, for collecting the animals, dissecting, fixing, and sending the material to me. I thank Thomas Bartolomaeus, Gregory Edgecombe, Markus Koch, Hilke Ruhberg and Gerhard Scholtz for giving some critical comments and useful suggestions on the manuscript. Ira Richling kindly helped to get contact to the staff of the INBio. I am thankful to Björn Quast for writing software for a more comfortable handling of the electron microscopic data. This study was supported by the Studienstiftung des deutschen Volkes (D/2002 0033) and the Deutsche Forschungsgemeinschaft (BA 1520/8-1, 8-2; RU 358/4-1, 4-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Mayer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, G. Origin and differentiation of nephridia in the Onychophora provide no support for the Articulata. Zoomorphology 125, 1–12 (2006). https://doi.org/10.1007/s00435-005-0006-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-005-0006-5

Keywords

Navigation