Skip to main content
Log in

From variable to constant cell numbers: cellular characteristics of the arthropod nervous system argue against a sister-group relationship of Chelicerata and “Myriapoda” but favour the Mandibulata concept

  • Review
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

In the new debate on arthropod phylogeny, structure and development of the nervous system provide important arguments. The architecture of the brain of Hexapoda, Crustacea and Chelicerata in recent years has been thoroughly compared against an evolutionary background. However, comparative aspects of the nervous systems in these taxa at the cellular level have been examined in only a few studies. This review sets out to summarize these aspects and to analyse the existing data with respect to the concept of individually identifiable neurons. In particular, mechanisms of neurogenesis, the morphology of serotonergic interneurons, the number of motoneurons, and cellular features and development of the lateral eyes are discussed. We conclude that in comparison to the Mandibulata, in Chelicerata the numbers of neurons in the different classes examined are much higher and in many cases are not fixed but variable. The cell numbers in Mandibulata are lower and the majority of neurons are individually identifiable. The characters explored in this review are mapped onto an existing phylogram, as derived from brain architecture in which the Hexapoda are an in-group of the Crustacea, and there is not any conflict of the current data with such a phylogenetic position of the Hexapoda. Nevertheless, these characters argue against a sister-group relationship of “Myriapoda” and Chelicerata as has been recently suggested in several molecular studies, but instead provide strong evidence in favour of the Mandibulata concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–d
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ax P (1999) Das System der Metazoa II. Fischer, Stuttgart

    Google Scholar 

  • Bähr R (1971) Die Ultrastruktur der Photorezeptoren von Lithobius forficatus L (Chilopoda: Lithobiidae). Z Zellforsch Mikrosk Anat 116:70–93

    Article  PubMed  Google Scholar 

  • Bähr R (1972) Licht- und dunkeladaptive Änderungen der Sehzellen von Lithobius forficatus L (Chilopoda: Lithobiidae). Cytobiologie 6(2):214–233

    Google Scholar 

  • Bähr R (1974) Contribution to the morphology of Chilopod eyes. Symp Zool Soc Lond 32:388–404

    Google Scholar 

  • Bedini C (1968) The ultrastructure of the eye of the centipede Polybothrus fasciatus (Newport). Monit Zool Ital Suppl 2:31–47

    Google Scholar 

  • Boyan G, Reichert H, Hirth F (2003) Commissure formation in the embryonic insectbrain. Arthropod Struct Dev 32:61−77

    Google Scholar 

  • Breidbach O (1995) Is the evolution of the arthropod brain convergent?. In: Breidbach O, Kutsch W (eds) The nervous system of invertebrates: an evolutionary and comparative approach. Birkhäuser, Basel, pp 383–406

    Google Scholar 

  • Breidbach O, Wegerhoff R (1993) Neuroanatomy of the central nervous system of the harvestman, Rilaena triangularis (HERBST 1799) (Arachnida; Opiliones)–principal organization, Gaba-like and serotonin-immunohistochemistry. Zool Anz 230:55–81

    Google Scholar 

  • Breidbach O, Dircksen H, Wegerhoff R (1995) Common general morphological pattern of peptidergic neurons in the arachnid brain: crustacean cardioactive peptide-immunoreactive neurons in the protocerebrum of seven arachnid species. Cell Tissue Res 279:183–197

    Article  CAS  PubMed  Google Scholar 

  • Burmester T (2002) Origin and evolution of arthropod hemocyanins and related proteins. J Comp Physiol B 172:95–107

    Article  CAS  PubMed  Google Scholar 

  • Burrows M (1996) The neurobiology of an insect brain. Oxford University Press, Oxford

    Google Scholar 

  • Campos-Ortega JA, Hartenstein V (1997) The embryonic development of Drosophila melanogaster. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Clarkson ENK (1975) The evolution of the eyes of trilobites. Fossils Strata 4:7–31

    Google Scholar 

  • Clarkson ENK (1979) The visula system of trilobites. Palaeontology 16:827–840

    Google Scholar 

  • Clarkson ENK, Zhang X-G (1991) Ontogeny of the carboniferous trilobite Paladin eichwaldi shunnerensis (King 1914). Trans R Soc Edinb Earth Sci 82:277–295

    Google Scholar 

  • Cook CE, Smith ML, Telford MJ, Bastianello A, Akam M (2001) Hox genes and the phylogeny of the arthropods. Curr Biol 11:759–763

    Article  CAS  PubMed  Google Scholar 

  • Deshpande N, Dittrich R, Technau GM, Urban J (2001) Successive specification of Drosophila neuroblasts NB 6-4 and NB 7-3 depends on the interaction of the segment polarity genes wingless, gooseberry and naked cuticle. Development 128:3253–3261

    CAS  PubMed  Google Scholar 

  • Dircksen H (1998) Conserved crustacean cardioactive (CCAP) neuronal networks and functions in arthropod evolution. In: Coast GM, Webster SG (eds) Recent advances in arthropod endocrinology. Cambridge University Press, Cambridge, pp 302–333

    Google Scholar 

  • Doe CQ, Skeath JB (1996) Neurogenesis in the insect central nervous system. Curr Opin Neurobiol 6:18–24

    Article  CAS  PubMed  Google Scholar 

  • Doe CQ, Fuerstenberg S, Peng C-Y (1998) Neural stem cells: from fly to vertebrates. J Neurobiol 36:111–127

    CAS  PubMed  Google Scholar 

  • Dohle W (1997) Myriapod-insect relationships as opposed to an insect-crustacean sister group relationship. In: Fortey RA, Thomas RH (eds) Arthropod relationships, Chapman & Hall, London, pp 305–316

    Google Scholar 

  • Dohle W (2001) Are the insects terrestrial crustaceans? A discussion of some new facts and arguments and the proposal of the proper name “Tetraconata” for the monophyletic unit Crustacea + Hexapoda. Ann Soc Entomol Fr 37:85–103

    Google Scholar 

  • Dohle W, Scholtz G (1997) How far does cell lineage influence cell fate specification in crustacean embryos? Semin Cell Dev Biol 8:379–390

    Article  CAS  PubMed  Google Scholar 

  • Dohle W, Gerberding M, Hejnol A, Scholtz G (2004) Cell lineage, segment differentiation, and gene expression in crustaceans. In: Scholtz G (ed) Evolutionary developmental biology of Crustacea. Crustacean issues, vol 15. Balkema, Lisse, pp 135–167

    Google Scholar 

  • Dove H, Stollewerk A (2003) Comparative analysis of neurogenesis in the myriapod Glomeris marginata (Diplopoda) suggests more similarities to chelicerates than to insects. Development 130:2161–2171

    Article  CAS  PubMed  Google Scholar 

  • Duman-Scheel M, Patel NH (1999) Analysis of molecular marker expression reveals neuronal homology in distantly related arthropods. Development 126:2327–2334

    CAS  PubMed  Google Scholar 

  • Eriksson BJ, Tait NN, Budd GE (2003) Head development in the onychophoran Euperipatoides kanangrensis with particular reference to the central nervous system. J Morphol 255:1–23

    Article  PubMed  Google Scholar 

  • Fahrbach SE (2004) What arthropod brains say about arthropod phylogeny. Proc Natl Acad Sci USA 101:3723–3724

    Article  CAS  PubMed  Google Scholar 

  • Fahrenbach W (1975) The visual system of the horseshoe crab Limulus polyphemus. Int Rev Cytol 41:285–349

    CAS  PubMed  Google Scholar 

  • Fanenbruck M, Harzsch S, Wägele W (2004) The brain of the Remipedia (Crustacea) and an alternative hypothesis on their phylogenetic relationships. Proc Natl Acad Sci USA 101:3868–3873

    Article  CAS  PubMed  Google Scholar 

  • Foelix R F (1996) Biology of spiders. Oxford University Press, New York

    Google Scholar 

  • Fourtner CR, Sherman RG (1973) Chelicerate neuromuscular systems. Am Zool 13:271–289

    Google Scholar 

  • Friedrich M, Benzer S (2000) Divergent decapentaplegic expression patterns in the compound eye development and the evolution of insect metamorphosis. J Exp Zool 288:39–55

    Article  CAS  PubMed  Google Scholar 

  • Friedrich M, Tautz D (2001) Arthropod rDNA phylogeny revisited: a consistency analysis using Monte Carlo Simulation. Ann Soc Entomol Fr 37:21–40

    Google Scholar 

  • Gerberding M (1997) Germ band formation and early neurogenesis of Leptodora kindti (Cladocera): first evidence for neuroblasts in the entomostracan crustaceans. Invertebr Reprod Dev 32:93–73

    Google Scholar 

  • Gerberding M, Scholtz G (2001) Neurons and glia in the midline of the higher crustacean Orchestia cavimana are generated via an invariant cell lineage that comprises a median neuroblast and glial progenitors. Dev Biol 235:397–409

    Article  CAS  PubMed  Google Scholar 

  • Gilai A, Parnas I (1970) Neuromuscular physiology of the closer muscle in the pedipalp of the scorpion Leiurus quinquestriatus. J Exp Biol 52:325–344

    Google Scholar 

  • Giribet G, Edgecombe GD, Wheeler WC (2001) Arthropod phylogeny based on eight molecular loci and morphology. Nature 413(6852):121–122

    PubMed  Google Scholar 

  • Goodman CS, Doe CQ (1993) Embryonic development of the Drosophila central nervous system. In: Bate M, Martinez-Arias A (eds) The development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., pp 1131–1207

    Google Scholar 

  • Govind CK, Wiens TJ (1985) Innervation of the limb accessory flexor muscle in several decapod crustaceans. I: Anatomy. J Neurobiol 16:317–328

    CAS  PubMed  Google Scholar 

  • Grenacher H (1880) Über die Augen einiger Myriapoden. Arch Mikrosk Anat 18:415–467

    Google Scholar 

  • Haas F, Waloszek D, Hartenberger R (2003) Devonohexapodus blocksbergensis, a new marine hexapod from the Lower Devonian Hunsrück Slates, and the origin of Atelocerata and Hexapoda. Org Divers Evol 3:39–54

    Google Scholar 

  • Hafner GS, Tokarski TR (2001) Retinal development in the lobster Homarus americanus: comparison with compound eyes of insects and other crustaceans. Cell Tissue Res 305:147–158

    Article  CAS  PubMed  Google Scholar 

  • Harzsch S (2001a) Entwicklung des Nervensystems der Crustacea: ein Beitrag zur Phylogenie der Arthropoda. Habilitationsschrift, Universität Bielefeld, Bielefeld, pp 1–296

    Google Scholar 

  • Harzsch S (2001b) Neurogenesis in the crustacean ventral nerve cord: homology of neuronal stem cells in Malacostraca and Branchiopoda?. Evol Dev 3:154–169

    Article  CAS  PubMed  Google Scholar 

  • Harzsch S (2002a) From stem cell to structure: neurogenesis in decapod crustaceans. In: Wiese K (ed) The crustacean nervous system. Springer, Berlin Heidelberg New York, pp 417–432

    Google Scholar 

  • Harzsch S (2002b) The phylogenetic significance of crustacean optic neuropils and chiasmata: a re-examination. J Comp Neurol 453:10–21

    Article  PubMed  Google Scholar 

  • Harzsch S (2002c) Neurobiologie und Evolutionsforschung: “Neurophylogenie” und die Stammesgeschichte der Euarthropoda. Neuroforum 4:267–273

    Google Scholar 

  • Harzsch S (2003a) Ontogeny of the ventral nerve cord in malacostracan crustaceans: a common plan for neuronal development in Crustacea and Hexapoda? Arthropod Struct Dev 32:17–38

    Article  Google Scholar 

  • Harzsch S (2003b) Evolution of identified arthropod neurons: the serotonergic system in relation to engrailed-expressing cells in the embryonic ventral nerve cord of the American lobster Homarus americanus Milne Edwards, 1873 (Malacostraca, Pleocyemata, Homarida). Dev Biol 258:44–56

    Article  CAS  PubMed  Google Scholar 

  • Harzsch S (2004a) The arthropod tritocerebrum: a “non-drosophilocentric” perspective. Evol Dev 6:303–309

    Article  PubMed  Google Scholar 

  • Harzsch S (2004b) Phylogenetic comparison of serotonin-immunoreactive neurons in representatives of the Chilopoda, Diplopoda and Chelicerata: implications for arthropod relationships. J Morphol 259:198–213

    Article  CAS  PubMed  Google Scholar 

  • Harzsch S, Walossek D (2000) Serotonin-immunoreactive neurons in the ventral nerve cord of Crustacea: a character to study aspects of arthropod phylogeny. Arthropod Struct Dev 29:307–322

    Article  Google Scholar 

  • Harzsch S, Walossek D (2001) Neurogenesis in the developing visual system of the branchiopod crustacean Triops longicaudatus (LeConte, 1846): corresponding patterns of compound-eye formation in Crustacea and Insecta?. Dev Genes Evol 211:37–43

    Article  CAS  PubMed  Google Scholar 

  • Harzsch S, Benton J, Dawirs RR, Beltz B (1999) A new look at embryonic development of the visual system in decapod crustaceans: neuropil formation, neurogenesis and apoptotic cell death. J Neurobiol 39:294–306

    CAS  PubMed  Google Scholar 

  • Harzsch S, Sandeman D, Chaigneau J (2004) Morphology and development of the central nervous system. In: Forest J, von Vaupel Klein JC (eds) Treatise on Zoology—Crustacea. Koninklijke Brill, Leiden (in press)

  • Heckmann R, Kutsch W (1995) Motor supply of the dorsal longitudinal muscles. II. Comparison of motoneuron sets in Tracheata. Zoomorphology 115:197–211

    Article  Google Scholar 

  • Hertel W, Pass G (2002) An evolutionary treatment of the morphology and physiology of circulatory organs in insects. Comp Biochem Physiol A 133:555–575

    Google Scholar 

  • Hilken G (1998) Vergleich von Tracheensystemen unter phylogenetischen Aspekten. Verh Naturwiss Ver Hamburg 37:5–94

    Google Scholar 

  • Hwang UW, Friedrich M, Tautz D, Park CJ, Kim W (2001) Mitochondrial protein phylogeny joins myriapods with chelicerates. Nature 413:154–157

    Article  CAS  PubMed  Google Scholar 

  • Isshiki T, Pearson B, Holbrook S, Doe CQ (2001) Drosophila neuroblasts sequentially express transciption factors which specify the temporal identity of their neuronal progeny. Cell 106:511–521

    Article  CAS  PubMed  Google Scholar 

  • Jaenicke E, Decker H, Gebauer W, Marks J, Burmester T (1999) Identification, structure and properties of hemocyanins from diplopod Myriapoda. J Biol Chem 274:29071–29074

    Article  CAS  PubMed  Google Scholar 

  • Kadner D, Stollewerk (2004) Neurogenesis in the chilopod Lithobius forficatus suggests more similarities to chelicerates than to insects. Dev Genes Evol. DOI 10.1007/s00427-004-0419-z

  • Klass KD, Kristensen NP (2001) The ground plan and affinities of hexapods: recent progress and open problems. In: Deuve T (ed) Origin of the Hexapoda. Ann Soc Entomol Fr 37:265–581

    Google Scholar 

  • Kraus O (1997) Phylogenetic relationships between higher taxa of tracheate arthropods. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman & Hall, London, pp 295–304

    Google Scholar 

  • Kraus O (2001) “Myriapoda” and the ancestry of Hexapoda. In: Deuve T (ed) Origin of the Hexapoda. Ann Soc Entomol Fr 37:105–127

    Google Scholar 

  • Kraus O (2003) Fossil giants and surviving dwarfs. Arthropleurida and Pselaphognatha (Atelocerata, Diplopoda): characters, phylogenetic relationships and construction. Verh Naturwiss Ver Hamburg 40:5–50

    Google Scholar 

  • Kusche H, Burmester T (2001) Diplopod hemacyanin sequence and the phylogenetic position of the Myriapoda. Mol Biol Evol 18:1566–1573

    CAS  PubMed  Google Scholar 

  • Kusche K, Ruhberg H, Burmester T (2002) A hemocaynin from the Onychophora and the emergence of respiratory proteins. Proc Natl Acad Sci USA 99:10545–10548

    Article  CAS  PubMed  Google Scholar 

  • Kutsch W, Breidbach O (1994) Homologous structures in the nervous system of Arthropoda. Adv Insect Physiol 24:1–113

    Google Scholar 

  • Loesel R, Strausfeld NJ (2003) Common design in brains of velvet worms and chelicerates and their phylogenetic relationships. In: Elsner N, Zimmermann H (eds) The neurosciences from basic research to therapy. Thieme, Stuttgart, p 677

    Google Scholar 

  • Loesel R, Nässel DR, Strausfeld NJ (2002) Common design in a unique midline neuropil in the brains of arthropods. Arthropod Struct Dev 31:77–91

    Article  Google Scholar 

  • Mallatt JM, Garey JR, Shultz JW (2004) Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol Phylogenet Evol 31:178–191

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki F (2000) Asymmetric division of Drosophila neural stem cells: a basis for neural diversity. Curr Opin Neurobiol 10:38–44

    Article  CAS  PubMed  Google Scholar 

  • McMahon BR (2001) Control of cardiovascular function and its evolution in Crustacea. J Exp Biol 204:923–932

    CAS  PubMed  Google Scholar 

  • Meadors S, McGuiness C, Dodge FA, Barlow RB (2001) Growth, visual field, and resolution in the juvenile Limulus lateral eye. Biol Bull 201:272–274

    CAS  PubMed  Google Scholar 

  • Melzer RR, Diersch R, Nicastro D, Smola U (1997) Compound eye evolution: highly conserved retinula and cone cell patterns indicate a common origin of the insect and crustacean ommatidium. Naturwissenschaften 84:542–544

    CAS  Google Scholar 

  • Melzer R, Michalke C, Smola U (2000) Walking on insect paths: early ommatidial development in the compound eye of the ancestral crustacean Triops cancriformis. Naturwissenschaften 87:308–311

    Article  CAS  PubMed  Google Scholar 

  • Mittmann B (2002) Early neurogenesis in the horseshoe crab and its implication for arthropod relationships. Biol Bull 203:221–222

    PubMed  Google Scholar 

  • Mittmann B, Scholtz G (2003) Development of the nervous system in the “head” of Limulus polyphemus (Chelicerata: Xiphosura): morphological evidence for a correspondence between the segments of the chelicerae and of the (first) antennae of Mandibulata. Dev Genes Evol 213:9–17

    PubMed  Google Scholar 

  • Moffett S, Yox DP, Kahan LB, Ridgway RL (1987) Innervation of the anterior and posterior levator muscles of the fifth leg of the crab Carcinus maenas. J Exp Biol 127:229–248

    Google Scholar 

  • Müller C, Rosenberg J, Richter S, Meyer-Rochow VB (2003) The compound eye of Scutigera coleoptrata (Linnaeus, 1758) (Chilopoda: Notostigmophora): an ultrastructural re-investigation that adds support to the Mandibulata-concept. Zoomorphology 122:191–209

    Article  Google Scholar 

  • Nielsen C (2001) Animal evolution—interrelationships of the living phyla, 2nd edn. Oxford University Press, Oxford, pp 1–563

    Google Scholar 

  • Nilsson D, Osorio D (1997) Homology and parallelism in arthropod sensory processing. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman & Hall, London, pp 333–348

    Google Scholar 

  • Novotny T, Eiselt R, Urban J (2002) Hunchback is required for the specification of the early sublineage of neuroblast 7-3 in the Drosophila central nervous system. Development 129:1027–1036

    CAS  PubMed  Google Scholar 

  • Paulus HF (1979) Eye structure and the monophyly of the Arthropoda. In: Gupta AP (ed) Arthropod phylogeny. van Nostrand Reinhold, New York, pp 299–383

    Google Scholar 

  • Paulus HF (1986) Evolutionswege zum Larvalauge der Insekten—ein Modell für die Entstehung und die Ableitung der ozellulären Lateralaugen der Myriapoda von Fazettenaugen. Zool J Syst 113:353–371

    Google Scholar 

  • Paulus HF (2000) Phylogeny of the Myriapoda-Crustacea-Insecta: a new attempt using photoreceptor structure. J Zool Syst Evol Res 38:189–208

    Article  Google Scholar 

  • Peitsalmi M, Pajunen VI (1992) Eye growth in Choneiulus palmatus and Napoiulus kochii (Diplopoda, Blaniulidae). Ann Zool Fenn 29:39–46

    Google Scholar 

  • Peterson KJ, Eernisse DJ (2001) Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences. Evol Dev 3:170–205

    Article  CAS  PubMed  Google Scholar 

  • Pisani D, Poling LL, Lyons-Weiler M, Hedges SB (2004) The colonization of land by animals: molecular phylogeny and divergence times among arthropods. BMC Biol 2:1

    Article  PubMed  Google Scholar 

  • Regier JC, Shultz JW (2001a) Elongation factor-2: a useful gene for arthropod phylogenetics. Mol Phylogenet Evol 20:136–148

    Article  CAS  PubMed  Google Scholar 

  • Regier JC, Shultz JW (2001b) A phylogenetic analysis of Myriapoda (Arthropoda) using two nuclear protein-encoding genes. Zool J Linn Soc 132:469–486

    Article  Google Scholar 

  • Richter S (1999) The structure of the ommatidia of the Malacostraca (Crustacea)—a phylogenetic approach. Verh Naturwiss Ver Hamburg 38:161–204

    Google Scholar 

  • Richter S (2002) The Tetraconata concept: hexapod-crustacean relationships and the phylogeny of Crustacea. Org Divers Evol 2:217–237

    Google Scholar 

  • Root TM, Bowerman RF (1979) Neuromuscular physiology of scorpion leg muscles. Am Zool 19:993

    Google Scholar 

  • Schliwa M, Fleissner G (1979) Arhabdomeric cells of the median eye retina of scorpions. J Comp Physiol 130:265–270

    Article  Google Scholar 

  • Schliwa M, Fleissner G (1980) The lateral eyes of the scorpion, Androctonus australis. Cell Tissue Res 206:95–114

    Article  CAS  PubMed  Google Scholar 

  • Schmid A, Becherer C (1996) Leucokinin-like immunoreactive neurones in the central nervous system of the spider Cupiennius salei. Cell Tissue Res 284:143–152

    Article  CAS  PubMed  Google Scholar 

  • Schmid A, Becherer C (1999) Distribution of histamine in the CNS of different spiders. Microsc Res Tech 44:81–93

    Article  CAS  PubMed  Google Scholar 

  • Scholtz G, Dohle W (1996) Cell lineage and cell fate in crustacean embryos-a comparative approach. Int J Dev Biol 37:211–220

    Google Scholar 

  • Seyfarth EA, Hammer K, Grünot U (1990) Serotonin-immunoreactive cells in the CNS of spiders. Verh Dtsch Zool Ges 83:640

    Google Scholar 

  • Seyfarth EA, Hammer K, Spörhase-Eichmann U, Hörner M, Vullings HGB (1993) Octopamine immunoreactive neurons in the fused central nervous system of spiders. Brain Res 611:197–206

    Article  CAS  PubMed  Google Scholar 

  • Shultz JW, Regier JC (2000) Phylogenetic analysis of arthropods using two nuclear protein-encoding genes supports a crustacean + hexapod clade. Proc R Soc Lond B 267:1011–1019

    Article  CAS  PubMed  Google Scholar 

  • Sinakevitch I, Douglass JK, Scholtz G, Loesel R, Strausfeld NJ (2003) Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa. J Comp Neurol 467:150–172

    Article  CAS  PubMed  Google Scholar 

  • Skeath JB (1999) At the nexus between pattern formation and cell-type specification: the generation of individual neuroblast fates in the Drosophila embryonic nervous system. BioEssays 21:922–931

    Article  CAS  PubMed  Google Scholar 

  • Spies T (1981) Structure and phylogenetic interpretation of diplopod eyes (Dilopoda). Zoomorphology 98:241–260

    Article  Google Scholar 

  • Spreitzer A, Melzer RR (2003) The nymphal eye of Parabuthus transvaalicus Purcell, 1899 (Buthidae): an accessory lateral eye in a scorpion. Zool Anz 242:137–143

    Google Scholar 

  • Stollewerk A (2002) Recruitment of cell groups through Delta/Notch signalling during spider neurogenesis. Development 129:5339–5348

    Article  CAS  PubMed  Google Scholar 

  • Stollewerk A, Weller M, Tautz D (2001) Neurogenesis in the spider Cupiennius salei. Development 128:2673–2688

    CAS  PubMed  Google Scholar 

  • Stollewerk A, Tautz D, Weller M (2003) Neurogenesis in the spider: new insights from comparative analysis of morphological processes and gene expression patterns. Arthropod Struct Dev 32:5–16

    Article  Google Scholar 

  • Strausfeld NJ (1998) Crustacean-insect relationships: the use of brain characters to derive phylogeny amongst segmented invertebrates. Brain Behav Evol 52:186–206

    Article  CAS  PubMed  Google Scholar 

  • Strausfeld NJ, Barth FG (1993) Two visual systems in one brain: neuropils serving the secondary eyes of the spider Cupiennius salei. J Comp Neurol 328:43–62

    CAS  PubMed  Google Scholar 

  • Strausfeld NJ, Hildebrand JG (1999) Olfactory systems: common design, uncommon origins? Curr Opin Neurobiol 9:634–640

    Article  CAS  PubMed  Google Scholar 

  • Strausfeld NJ, Welzzien P, Barth FG (1993) Two visual systems in one brain: neuropils serving the principal eyes of the spider Cupiennius salei. J Comp Neurol 328:63–75

    CAS  PubMed  Google Scholar 

  • Strausfeld NJ, Buschbeck EK, Gomez RS (1995) The arthropod mushroom body: its functional roles, evolutionary enigmas and mistaken identities. In: Breidbach O, Kutsch W (eds) The nervous system of invertebrates: an evolutionary and comparative approach. Birkhäuser, Basel, pp 349–406

    Google Scholar 

  • Strausfeld NL, Hansen L, Li Y, Gomez RS (1998) Evolution, discovery, and interpretations of arthropod mushroom bodies. Learn Mem 5:11–37

    CAS  PubMed  Google Scholar 

  • Thomas JB, Bastiani MJ, Bate M, Goodman CS (1984) From grasshopper to Drosophila: a common plan for neuronal development. Nature 310:203–207

    Article  CAS  PubMed  Google Scholar 

  • Truman JW, Ball EE (1998) Patterns of embryonic neurogenesis in a primitive wingless insect, the silverfish, Ctenolepisma longicaudata: comparison with those seen in flying insects. Dev Genes Evol 208:357–368

    Article  CAS  PubMed  Google Scholar 

  • Walossek D (1999) On the Cambrian diversity of Crustacea. In: Schram FR, von Vaupel Klein JC (eds) Crustaceans and the biodiversity crisis. Proceedings of the 4th international Crustacean congress. Brill, Leiden, pp 3–27

    Google Scholar 

  • Waloszek D (2003) Cambrian “Orsten”-type preserved arthropods and the phylogeny of Crustacea. In: Legakis A, Sfenthourakis S, Polymeni R, Theealou-Legaki M (eds) Proceedings of the 18th international congress of zoology. Pensoft, Sofia, pp 69–87

    Google Scholar 

  • Waterman TH (1954) Relative growth and the compound eye in Xiphosura. J Morphol 54:125–158

    Google Scholar 

  • Wegerhoff R, Breidbach O (1995) Comparative aspects of the chelicerate nervous system. In: Breidbach O, Kutsch W (eds) The nervous systems of invertebrates: an evolutionary and comparative approach. Birkhäuser, Basel, pp 159–180

    Google Scholar 

  • Westheide W, Rieger R (1996) Spezielle Zoologie. Fischer, Stuttgart

    Google Scholar 

  • Whitington PM (1995) Conservation versus change in early axogenesis in arthropod embryos: a comparison between myriapods, crustaceans, and insects. In: Breidbach O, Kutsch W (eds) The nervous system of invertebrates: an evolutionary and comparative approach. Birkhäuser, Basel, pp 181–220

    Google Scholar 

  • Whitington PM (1996) Evolution of neuronal development in arthropods. Semin Cell Dev Biol 7:605–614

    Article  Google Scholar 

  • Whitington PM (2004) The development of the crustacean nervous system. In: Scholtz G (ed) Evolutionary developmental biology of Crustacea. Crustacean issues, vol 15. Balkema, Lisse, pp 135–167

    Google Scholar 

  • Whitington PM, Bacon JP (1997) The organization and development of the arthropod ventral nerve cord: insights into arthropod relationships. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman & Hall, London, pp 295–304

    Google Scholar 

  • Whitington PM, Meier T, King P (1991) Segmentation, neurogenesis and formation of early axonal pathways in the centipede, Ethmostigmus rubripes (Brandt). Roux’s Arch Dev Biol 199:349–363

    Google Scholar 

  • Whitington PM, Leach D, Sandeman R (1993) Evolutionary change in neural development within the arthropods: axogenesis in the embryos of two crustaceans. Development 118:449–461

    CAS  PubMed  Google Scholar 

  • Wiens TJ (1976) Electrical and structural properties of crayfish claw motoneurons in isolated claw-ganglion preparation. J Comp Physiol A 112:213–233

    Article  Google Scholar 

  • Wiens TJ (1989) Common and specific inhibition in leg muscles of decapods: sharpened distinctions. J Neurobiol 20:458–469

    CAS  PubMed  Google Scholar 

  • Wiens TJ, Wolf H (1993) The inhibitory motoneurons of crayfish thoracic limbs: identification, structures, and homology with insect common inhibitors. J Comp Neurol 336:261–278

    CAS  PubMed  Google Scholar 

  • Wiersma CAG (1941) The inhibitory nerve supply of the leg muscles of different decapod crustaceans. J Comp Neurol 74: 63–79

    Google Scholar 

  • Wiersma CAG, Ripley SH (1952) Innervating patterns of crustacean limbs. Physiol Comp Oecol 2:391–405

    Google Scholar 

  • Wildt M, Harzsch S (2002) A new look at an old visual system: structure and development of the compound eyes and optic ganglia of the brine shrimp Artemia salina Linnaeus, 1758 (Branchiopoda, Anostraca). J Neurobiol 52:117–132

    Article  PubMed  Google Scholar 

  • Wirkner CS, Pass G (2002) The circulatory system in Chilopoda: functional morphology and phylogenetic aspects. Acta Zool 83:193–202

    Article  Google Scholar 

  • Wolf H, Harzsch S (2002a) Evolution of the arthropod neuromuscular system. 1. Arrangement of muscles and excitatory innervation in the walking legs of the scorpion Vaejovis spinigerus (Wood, 1863) (Vaejovidae, Scorpiones, Arachnida). Arthropod Struct Dev 31:185–202

    Article  Google Scholar 

  • Wolf H, Harzsch S (2002b) Evolution of the arthropod neuromuscular system. 2. Inhibitory innervation of the walking legs of the scorpion Vaejovis spinigerus (Wood, 1863) (Vaejovidae, Scorpiones, Arachnida). Arthropod Struct Dev 31:203–215

    Article  Google Scholar 

  • Wolf H, Lang DM (1994) Origin and clonal relationship of common inhibitory motoneurons CI1 and CI3 in the locust CNS. J Neurobiol 25:846–864

    CAS  PubMed  Google Scholar 

  • Zhang X-G, Clarkson ENK (1990) The eyes of Lower Cambrian eodiscid trilobites. Palaeontology 33:911–932

    Google Scholar 

Download references

Acknowledgements

S.H. is a Heisenbergfellow of the DFG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Harzsch.

Additional information

Edited by D. Tautz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harzsch, S., Müller, C.H.G. & Wolf, H. From variable to constant cell numbers: cellular characteristics of the arthropod nervous system argue against a sister-group relationship of Chelicerata and “Myriapoda” but favour the Mandibulata concept. Dev Genes Evol 215, 53–68 (2005). https://doi.org/10.1007/s00427-004-0451-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-004-0451-z

Keywords

Navigation