Skip to main content

Advertisement

Log in

Molecular cytogenetic characterization of a new wheat-rye 1BL•1RS translocation line expressing superior stripe rust resistance and enhanced grain yield

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

A new wheat-rye 1BL•1RS translocation line, with the characteristics of superior stripe rust resistance and high thousand-kernel weight and grain number per spike, was developed and identified from progenies of wheat-rye- Psathyrostachys huashanica trigeneric hybrids.

Abstract

The wheat-rye 1BL1RS translocation line from Petkus rye has contributed substantially to the world wheat production. However, due to extensive growing of cultivars with disease resistance genes from short arm of rye chromosome 1R and coevolution of pathogen virulence and host resistance, these cultivars successively lost resistance to pathogens. In this study, a new wheat-rye line K13-868, derived from the progenies of wheat-rye-Psathyrostachys huashanica trigeneric hybrids, was identified and analyzed using fluorescence in situ hybridization (FISH), genomic in situ hybridization (GISH), acid polyacrylamide gel electrophoresis (A-PAGE), and molecular markers. Cytological studies indicated that the mean chromosome configuration of K13-868 at meiosis was 2n = 42 = 0.14 I + 18.78 II (ring) + 2.15 II (rod). Sequential FISH and GISH results demonstrated that K13-868 was a compensating wheat-rye 1BL1RS Robertsonian translocation line. Acid PAGE analysis revealed that clear specific bands of rye 1RS were expressed in K13-868. Simple sequence repeat (SSR) and rye 1RS-specific markers ω-sec-p1/ω-sec-p2 and O-SEC5′-A/O-SEC3′-R suggested that the 1BS arm of wheat had been substituted by the 1RS arm of rye. At the seedling and adult growth stage, compared with its recurrent wheat parent SM51 and six other wheat cultivars containing the 1RS arm in southwestern China, K13-868 showed high levels of resistance to stripe rust (Puccinia striiformis f. sp. tritici, Pst) pathogens prevalent in China, which are virulent to Yr10 and Yr24/Yr26. In addition, K13-868 expresses higher thousand-kernel weight and more grain number per spike than these controls in two growing seasons, suggesting that this line may carry yield-related genes of rye. This translocation line, with significant characteristics of resistance to stripe rust and high thousand-kernel weight and grain number per spike, could be utilized as a valuable germplasm for wheat improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

GISH:

Genome in situ hybridization

FISH:

Fluorescence in situ hybridization

SSR:

Simple sequence repeat

Pst :

Puccinia striiformis f. sp. tritici

CS:

Chinese Spring

SM51:

Shumai51

References

  • Bartoš P (1993) Chromosome 1R of rye in wheat breeding. Plant Breed 63:1203–1211

    Google Scholar 

  • Börner A, Schumann E, Fürste A, CösterH Leithold B, Röder S, Weber E (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Caceres ME, Pupilli F, Ceccarelli M, Vaccino P, Sarri V, De Pace C, Cionini PG (2012) Cryptic introgression of Dasypyrum villosum parental DNA in wheat lines derived from intergeneric hybridization. Cytogenet Genome Res 136:75–81

    Article  CAS  PubMed  Google Scholar 

  • Cainong JC, Bockus WW, Feng YG, Chen PD, Qi LL, Sehgal SK, Danilova TV, Koo DH, Friebe B, Gill BS (2015) Chromosome engineering, mapping, and transferring of resistance to Fusarium head blight disease from Elymus tsukushiensis into wheat. Theor Appl Genet 128:1019–1027

    Article  CAS  PubMed  Google Scholar 

  • Carver BF, Rayburn AL (1994) Comparison of related wheat stocks possessing 1B or 1RS.1BL chromosomes: agronomic performance. Crop Sci 34:1505–1510

    Article  Google Scholar 

  • Chen PD, You CF, Hu Y, Chen SW, Zhou B, Cao AZ, Wang XE (2013) Radiation-induced translocations with reduced Haynaldia villosa chromatin at the Pm21 locus for powdery mildew resistance in wheat. Mol Breed 31:477–484

    Article  CAS  Google Scholar 

  • Cook RJ (1987) The classification of wheat cultivars using a standard reference electrophoresis method. J Nat Agric Bot 17:273–281

    Google Scholar 

  • Dong YS, Zhou RH, Xu SJ, Cauderon Y, Wang RC (1992) Desirable characteristics in perennial Triticeae collected in China for wheat improvement. Hereditas 116:176–178

    Google Scholar 

  • Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans LT (1996) Crop evolution, adaptation and yield. Cambridge University Press

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Article  Google Scholar 

  • Gill BS, Friebe BR, White FF (2011) Alien introgressions represent a rich source of genes for crop improvement. Proc Nat Acad Sci USA 108:7657–7658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han F, Liu B, Fedak G, Liu Z (2004) Genomic constitution and variation in five partial amphiploids of wheat–Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor Appl Genet 109:1070–1076

    Article  CAS  PubMed  Google Scholar 

  • Han DJ, Wang QL, Zhang L, Kang ZS (2010) Evaluation of resistance of current wheat cultivars to stripe rust in northwest China, north China and the middle and lower reaches of Changjiang River epidemic area. Sci Agric Sin 43:2889–2896

    Google Scholar 

  • Han DJ, Wang QL, Chen XM, Zeng QD, Wu JH, Xue WB, Zhan GM, Huang LL, Kang ZS (2015) Emerging Yr26-virulent races of Puccinia striiformis f. sp. tritici are threatening wheat production in the Sichuan Basin, China. Plant Dis 99:754–760

    Article  Google Scholar 

  • Huang Q, Li X, Chen WQ, Xiang ZP, Zhong SF, Chang ZJ, Zhang M, Zhang HY, Tan FQ, Ren ZL, Luo PG (2014) Genetic mapping of a putative Thinopyrum intermedium-derived stripe rust resistance gene on wheat chromosome 1B. Theor Appl Genet 127:843–853

    Article  CAS  PubMed  Google Scholar 

  • Jiang JM, Friebe B, Gill BS (1994) Recent advances in alien gene transfer in wheat. Euphytica 73:199–212

    Article  Google Scholar 

  • Kang HY, Wang Y, Sun GL, Zhang HQ, Fan X, Zhou YH (2009) Production and characterization of an amphiploid between common wheat and Psathyrostachys huashanica Keng ex Kuo. Plant Breed 128:36–40

    Article  CAS  Google Scholar 

  • Kang HY, Chen Q, Wang Y, Zhong MY, Zhang HQ, Zhou YH (2010) Molecular cytogenetic characterization of the amphiploid between bread wheat and Psathyrostachys huashanica. Genet Resour Crop Evol 57:111–118

    Article  Google Scholar 

  • Kang HY, Wang Y, Fedak G, Cao WG, Zhang HQ, Fan X, Sha LN, Xu LL, Zheng YL, Zhou YH (2011) Introgression of chromosome 3Ns from Psathyrostachys huashanica into wheat specifying resistance to stripe rust. PLoS One 6(7):e21802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang HY, Zhong MY, Xie Q, Zhang HQ, Fan X, Sha LN, Xu LL, Zhou YH (2012) Production and cytogenetics of trigeneric hybrid involving Triticum, Psathyrostachys and Secale. Genet Resour Crop Evol 59:445–453

    Article  Google Scholar 

  • Kim W, Johnson JW, Baenziger PS, Lukaszewski AJ, Gaines CS (2004) Agronomic effect of wheat–rye translocation carrying rye chromatin (1R) from different sources. Crop Sci 44:1254–1258

    Article  Google Scholar 

  • Klindworth DL, Niu Z, Chao S, Friesen TL, Jin Y, Faris JD, Cai X, Xu SS (2012) Introgression and characterization of a goatgrass gene for a high level of resistance to Ug99 stem rust in tetraploid wheat. Genes Genome Genet 2:665–673

    CAS  Google Scholar 

  • Komuro S, Endo R, Shikata K, Kato A (2013) Genomic and chromosomal distribution patterns of various repeated DNA sequences in wheat revealed by a fluorescence in situ hybridization procedure. Genome 56:131–137

    Article  CAS  PubMed  Google Scholar 

  • Kumlay AM, Baenziger PS, Gill KS, Shelton DR, Graybosch RA, Lukaszewski AJ, Wesenberg DM (2003) Understanding the effect of rye chromatin in bread wheat. Crop Sci 43:1643–1651

    Article  Google Scholar 

  • Kuraparthy V, Chhuneja P, Dhaliwal HS, Kaur S, Bowden RL, Gill BS (2007a) Characterization and mapping of cryptic alien introgression from Aegilops geniculata with leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet 114:1379–1389

    Article  CAS  PubMed  Google Scholar 

  • Kuraparthy V, Sood S, Chhuneja P, Dhaliwal HS, Kaur S, Bowden RL, Gill BS (2007b) A cryptic wheat- Aegilops triuncialis translocation with leaf rust resistance gene Lr58. Crop Sci 47:1995–2003

    Article  CAS  Google Scholar 

  • Larson SR, Kishii M, Tsujimoto H, Qi LL, Chen PD, Lazo GR, Jensen KB, Wang RRC (2012) Leymus EST linkage maps identify 4NsL-5NsL reciprocal translocation, wheat-Leymus chromosome introgressions, and functionally important gene loci. Theor Appl Genet 124:189–206

    Article  CAS  PubMed  Google Scholar 

  • Lelley T, Eder C, Grausgruber H (2004) Influence of 1BL.1RS wheat–rye chromosome translocation on genotype by environment interaction. J Cereal Sci 39:313–320

    Article  CAS  Google Scholar 

  • Liu XK (1988) Study on the yellow rust resistance to common wheat (T. aestivum). Plant Prot 15:33–39

    Google Scholar 

  • Luan Y, Wang XG, Liu WH, Li CY, Zhang JP, Sitch LA, Farooq S (2010) Production and identification of wheat-Agropyron cristatum 6P translocation lines. Planta 232:501–510

    Article  CAS  PubMed  Google Scholar 

  • Lukaszewski AJ (1990) Frequency of 1RS.1AL and 1RS.1BL translocations in United States wheats. Crop Sci 30:1151–1153

    Article  Google Scholar 

  • Lukaszewski AJ (2000) Manipulation of the 1RS∙1BL translocation in wheat by induced homoeologous recombination. Crop Sci:216–225

  • Mago R, Spielmeyer W, Lawrence GJ, Lagudah ES, Ellis JG, Pryor A (2002) Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines. Theor Appl Genet 104:1317–1324

    Article  CAS  PubMed  Google Scholar 

  • Mater Y, Baenziger S, Gill K, Graybosch R, Whitcher L, Baker C, Specht J, Dweikat I (2004) Linkage mapping of powdery mildew and greenbug resistance genes on recombinant 1RS from ‘Amigo’ and ‘Kavkaz’ wheat–rye translocations of chromosome 1RS.1AL. Genome 47:292–298

    Article  CAS  PubMed  Google Scholar 

  • McIntyre CL, Pereira S, Moran LB, Appels R (1990) New Secale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat. Genome 33:635–640

    Article  CAS  PubMed  Google Scholar 

  • McKendry AL, Tague DN, Miskin KE (1996) Effect of 1BL.1RS on agronomic performance of soft red winter wheat. Crop Sci 36:844–847

    Article  Google Scholar 

  • Molnár-Láng M, Cseh A, Szakács E, Molnár I (2010) Development of a wheat genotype combining the recessive crossability alleles kr1kr1kr2kr2 and the 1BL.1RS translocation, for the rapid enrichment of 1RS with new allelic variation. Theor Appl Genet 120:1535–1545

    Article  PubMed  Google Scholar 

  • Moreno-Sevilla B, Baenzinger PS, PetersonCJ Graybosch RA, McVey DV (1995) The 1BL/1RS translocation: agronomic performance of F3-derived lines from a winter wheat cross. Crop Sci 35:1051–1055

    Article  Google Scholar 

  • Mujeeb-Kazi A, Kazi AG, Dundas I, Rasheed A, Ogbonnaya F, Kishi M, Bonnett D, Wang RRC, Xu S, Chen P, Mahmood T, Bux H, Farrakh S (2013) Genetic diversity for wheat improvement as a conduit for food security. In: Sparks D (ed) Advances in agronomy, vol 122. Academic Press, Burlington, pp 179–257

    Google Scholar 

  • Multani DS, Jena KK, Brar DS (1994) Development of monosomic alien addition lines and introgression of genes from Oryza australiensis Domin. to cultivated rice O. sativa L. Theor Appl Genet 88:102–109

    Article  CAS  PubMed  Google Scholar 

  • Nagy ED, Eder C, Molnar-Lang M, Lelley T (2003) Genetic mapping of sequence-specific PCR-based markers on the short arm of the 1RS.1BL wheat–rye translocation. Euphytica 132:243–250

    Article  CAS  Google Scholar 

  • Niu Z, Klindworth DL, Yu G, Friesen TL, Chao S, Jin Y, Cai X, Ohm JB, Rasmussen JB, Xu SS (2014) Development and characterization of wheat lines carrying stem rust resistance gene Sr43 derived from Thinopyrum ponticum. Theor Appl Genet 127:969–980

    Article  CAS  PubMed  Google Scholar 

  • Pretorius ZA, Singh RP, Wagoire WW, Payne TS (2000) Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Dis 84:203

    Article  Google Scholar 

  • Qi LL, Pumphrey MO, Friebe B, Zhang P, Chen Q, Bowden RL, Rouse MN, Jin Y, Gill BS (2011) A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effective against race Ug99 from Dasypyrum villosum into bread wheat. Theor Appl Genet 123:159–167

    Article  CAS  PubMed  Google Scholar 

  • Ren TH, Yang ZJ, Yan BJ, Zhang HQ (2009) Development and characterization of a new 1BL.1RS translocation line with resistance to stripe rust and powdery mildew of wheat. Euphytica 169:207–213

    Article  Google Scholar 

  • Shimizu Y, Nasuda S, Endo TR (1997) Detection of Sec-1locus of rye by a PCR-based method. Genes Genet Syst 72:197–203

    Article  CAS  PubMed  Google Scholar 

  • Singh NK, Shepherd KW, McIntosh RA (1990) Linkage mapping of genes for resistance to leaf, stem, and stripe rusts and x-secalins on the short arm of rye chromosome 1R. Theor Appl Genet 80:609–616

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Huerta-Espino J, Rajaram S, Crossa J (1998) Agronomic effects from chromosome translocations 7DL∙7Ag and 1BL∙1RS in spring wheat. Crop Sci 38:27–33

    Article  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for common wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Tang ZX, Yang ZJ, Fu SL (2014) Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet 55:313–318

    Article  CAS  PubMed  Google Scholar 

  • Villareal RL, Rajaram S, Mujeeb-Kazi A, Del Toro E (1991) The effect of chromosome 1B/1R translocation on the yield potential of certain spring wheats (Triticum aestivum L.). Plant Breed 106:77–81

    Article  Google Scholar 

  • Villareal RL, Banuelos O, Mujeeb-Kazi A, Rajaram S (1998) Agronomic performance of chromosome 1B and T1BL.1RS near-isolines in the spring bread wheat Seri M82. Euphytica 103:195–202

    Article  Google Scholar 

  • Wan AM, Zhao ZH, Chen XM, He ZH, Jin SL, Jia QZ, Yao G, Yang JX, Wang BT, Li GB, Bi YQ, Yuan ZY (2004) Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Dis 88:896–904

    Article  Google Scholar 

  • Xiao Y, Liu X, He S, Xia X, He Z, Ji W (2011) Analyses of genetic effect of 1BL. 1RS translocation on kernel traits in common wheat. J Northwest Agricul For Univ 5:24

  • Xie Q, Kang HY, Tao S, SparkesDL Fan XM, Cui ZG, Xu LL, HuangJ Fan X, Sha LN, Zhang HQ, Zhou YH (2012) Wheat lines derived from trigeneric hybrids of wheat-rye-Psathyrostachys huashanica, the potential resources for grain weight improvement. Aust J Crop Sci 6:1550–1557

    Google Scholar 

  • Ye XL, Lu YQ, Liu WH, Chen GY, Han HM, Zhang JP, Yang XM, Li XQ, Gao AN, Li LH (2015) The effects of chromosome 6P on fertile tiller number of wheat as revealed in wheat-Agropyron cristatum chromosome 5A/6P translocation lines. Theor Appl Genet 128:797–811

    Article  PubMed  Google Scholar 

  • Yu L, He F, Chen GL, Cui F (2011) Identification of 1BL·1RS wheat-rye chromosome translocations via 1RS specific molecular markers and genomic in situ hybridization. Acta Agric Sin 37:563–569

    Article  CAS  Google Scholar 

  • Zeller FJ (1973) 1B/1R wheat chromosome substitutions and translocations. In: Sears ER, Sears LMS (eds) Proceedings of 4th international wheat genetic symptoms. Columbia USA, pp 209–221

  • Zhan HX, Li GR, Zhang XJ, Li X, Guo HJ, Gong WP, Jia JQ, Qiao LY, Ren YK, Yang ZJ, Chang ZJ (2014) Chromosomal location and comparative genomics analysis of powdery mildew resistance gene Pm51 in a putative wheat-Thinopyrum ponticum introgression line. PLoS ONE 9(11):e113455

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhang JP, Liu WH, Han HM, Lu YQ, Yang XM, Li XQ, Li LH (2015a) Introgression of Agropyron cristatum 6P chromosome segment into common wheat for enhanced thousand-grain weight and spike length. Theor Appl Genet 128:1827–1837

    Article  PubMed  Google Scholar 

  • Zhang RQ, Hou F, Feng YG, Zhang W, Zhang MY, Chen PD (2015b) Characterization of a Triticum aestivumDasypyrum villosum T2VS•2DL translocation line expressing a longer spike and more kernels traits. Theor Appl Genet 128:2415–2425

    Article  CAS  PubMed  Google Scholar 

  • Zhen Z, Mares D (1992) A simple extraction and one-step SDS-PAGE system for separating HMW and LMW glutenin subunits of wheat and high molecular weight proteins of rye. J Cereal Sci 15:63–78

    Article  CAS  Google Scholar 

  • Zhou Y, He ZH, Zhang GS, Xia LQ, Chen XM, Gao YC, Jin ZB, Yu GJ (2004) Utilization of 1BL/1RS translocation in wheat breeding in China. Acta Agron Sin 30:531–535

    CAS  Google Scholar 

  • Zhou Y, He ZH, Sui XX, Xia XC, Zhang XK, Zhang GS (2007) Genetic improvement of grain yield and associated traits in the northern China winter wheat region from 1960 to 2000. Crop Sci 47:245–253

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (No. 31501311), the National High Technology Research and Development Program of China (863 program, No. 2011AA100103), and the Science and Technology Bureau and Education Bureau of Sichuan Province. We thank Dr. Tang ZX (Sichuan Agricultural University, China) for technical guidance in FISH analysis. We also thank Dr. Steven S. Xu, Red River Valley Agricultural Research Center, USDA-ARS, USA, for help with manuscript improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houyang Kang.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, W., Tang, Y., Zhu, W. et al. Molecular cytogenetic characterization of a new wheat-rye 1BL•1RS translocation line expressing superior stripe rust resistance and enhanced grain yield. Planta 244, 405–416 (2016). https://doi.org/10.1007/s00425-016-2517-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2517-3

Keywords

Navigation