Skip to main content
Log in

Development and characterization of wheat lines carrying stem rust resistance gene Sr43 derived from Thinopyrum ponticum

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Wheat lines carrying Ug99-effective stem rust resistance gene Sr43 on shortened alien chromosome segments were produced using chromosome engineering, and molecular markers linked to Sr43 were identified for marker-assisted selection.

Abstract

Stem rust resistance gene Sr43, transferred into common wheat (Triticum aestivum) from Thinopyrum ponticum, is an effective gene against stem rust Ug99 races. However, this gene has not been used in wheat breeding because it is located on a large Th. ponticum 7el2 chromosome segment, which also harbors genes for undesirable traits. The objective of this study was to eliminate excessive Th. ponticum chromatin surrounding Sr43 to make it usable in wheat breeding. The two original translocation lines KS10-2 and KS24-1 carrying Sr43 were first analyzed using simple sequence repeat (SSR) markers and florescent genomic in situ hybridization. Six SSR markers located on wheat chromosome arm 7DL were identified to be associated with the Th. ponticum chromatin in KS10-2 and KS24-1. The results confirmed that KS24-1 is a 7DS·7el2L Robertsonian translocation as previously reported. However, KS10-2, which was previously designated as a 7el2S·7el2L-7DL translocation, was identified as a 7DS-7el2S·7el2L translocation. To reduce the Th. ponticum chromatin carrying Sr43, a BC2F1 population (Chinese Spring//Chinese Spring ph1bph1b*2/KS10-2) containing ph1b-induced homoeologous recombinants was developed, tested with stem rust, and genotyped with the six SSR markers identified above. Two new wheat lines (RWG33 and RWG34) carrying Sr43 on shortened alien chromosome segments (about 17.5 and 13.7 % of the translocation chromosomes, respectively) were obtained, and two molecular markers linked to Sr43 in these lines were identified. The new wheat lines with Sr43 and the closely linked markers provide new resources for improving resistance to Ug99 and other races of stem rust in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • American Association of Cereal Chemists International (AACCI) (2010) Approved methods of analysis, 11th edn. AACCI, St. Paul

    Google Scholar 

  • Anugrahwati DR, Shepherd KW, Verlin DC, Zhang P, Mirzaghaderi G, Walker E, Francki MG, Dundas IS (2008) Isolation of wheat–rye 1RS recombinants that break the linkage between the stem rust resistance gene SrR and secalin. Genome 51:341–349

    Article  PubMed  CAS  Google Scholar 

  • Ayala-Navarrete L, Bariana HS, Singh RP, Gibson JM, Mechanicos AA, Larkin PJ (2007) Trigenomic chromosomes by recombination of Thinopyrum intermedium and Th. ponticum translocations in wheat. Theor Appl Genet 116:63–75

    Article  PubMed  CAS  Google Scholar 

  • Dundas IS, Anugrahwati DR, Verlin DC, Park RF, Bariana HS, Mago R, Islam AKMR (2007) New sources of rust resistance from alien species: meliorating linked defects and discovery. Aust J Agric Res 58:545–549

    Article  CAS  Google Scholar 

  • Dvořák J (1975) Meiotic pairing between single chromosomes of diploid Agropyron elongatum and decaploid A. elongatum in Triticum aestivum. Can J Genet Cytol 17:329–336

    Google Scholar 

  • Faris JD, Xu SS, Cai X, Friesen TL, Jin Y (2008) Molecular and cytogenetic characterization of a durum wheat–Aegilops speltoides chromosome translocation conferring resistance to stem rust. Chromosome Res 16:1097–1105

    Article  PubMed  CAS  Google Scholar 

  • Friebe B, Jiang J, Knott DR, Gill BS (1994) Compensation indices of radiation-induced wheat Agropyron elongatum translocations conferring resistance to leaf rust and stem rust. Crop Sci 34:400–404

    Article  Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Article  Google Scholar 

  • Groenewald JZ, Fourie M, Marais AS, Marais GF (2005) Extension and use of a physical map of the Thinopyrum-derived Lr19 translocation. Theor Appl Genet 112:131–138

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Singh RP (2006) Resistance in U.S. wheat to recent eastern African isolates of Puccinia graminis f. sp. tritici with virulence to resistance gene Sr31. Plant Dis 90:476–480

    Article  CAS  Google Scholar 

  • Jin Y, Pretorius ZA, Singh RP (2007a) New virulence within race TTKS (Ug99) of the stem rust pathogen and effective resistance genes. Phytopathology 97:S137

    Google Scholar 

  • Jin Y, Singh RP, Ward RW, Wanyera R, Kinyua M, Njau P, Fetch T, Pretorius ZA, Yahyaoui A (2007b) Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp tritici. Plant Dis 91:1096–1099

    Article  Google Scholar 

  • Jin Y, Szabo LJ, Pretorius ZA, Singh RP, Ward R, Fetch T (2008) Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp tritici. Plant Dis 92:923–926

    Article  Google Scholar 

  • Jin Y, Szabo LJ, Rouse MN, Fetch T, Pretorius ZA, Wanyera R, Njau P (2009) Detection of virulence to resistance gene Sr36 within the TTKS race lineage of Puccinia graminis f. sp tritici. Plant Dis 93:367–370

    Article  CAS  Google Scholar 

  • Kerber ER, Dyck PL (1990) Transfer to hexaploid wheat of linked genes for adult-plant leaf rust and seedling stem rust resistance from an amphiploid of Aegilops-speltoides × Triticum monococcum. Genome 33:530–537

    Article  CAS  Google Scholar 

  • Kibiridge-Sebunya I, Knott DR (1983) Transfer of stem rust resistance to wheat from an Agropyron chromosome having a gametocidal effect. Can J Genet Cytol 25:215–221

    Article  Google Scholar 

  • Kim NS, Armstrong K, Knott DR (1993) Molecular detection of Lophopyrum chromatin in wheat–Lophopyrum recombinants and their use in the physical mapping of chromosome 7D. Theor Appl Genet 85:561–567

    Article  PubMed  CAS  Google Scholar 

  • Klindworth DL, Niu Z, Chao S, Friesen TL, Jin Y, Faris JD, Cai X, Xu SS (2012) Introgression and characterization of a goatgrass gene for a high level of resistance to Ug99 stem rust in tetraploid wheat. Genes Genomes Genet 2:665–673

    CAS  Google Scholar 

  • Knott DR, Anderson RG (1956) The inheritance of rust resistance. I. The inheritance of stem rust in ten varieties of common wheat. Can J Agri Sci 36:174–195

    Google Scholar 

  • Knott DR, Dvořák J, Nanda JS (1977) The transfer to wheat and homoeology of an Agropyron elongatum chromosome carrying resistance to stem rust. Can J Genet Cybol 19:75–79

    Google Scholar 

  • Liu SX, Yu LX, Singh RP, Jin Y, Sorrells ME, Anderson JA (2010) Diagnostic and co-dominant PCR markers for wheat stem rust resistance genes Sr25 and Sr26. Theor Appl Genet 120:691–697

    Article  PubMed  CAS  Google Scholar 

  • Liu WX, Jin Y, Rouse M, Friebe B, Gill B, Pumphrey MO (2011a) Development and characterization of wheat–Ae. searsii Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust. Theor Appl Genet 122:1537–1545

    Article  PubMed  Google Scholar 

  • Liu WX, Rouse M, Friebe B, Jin Y, Gill B, Pumphrey MO (2011b) Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin. Chromosome Res 19:669–682

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Danilova TV, Rouse MN, Bowden RL, Friebe B, Gill BS, Pumphrey MO (2013) Development and characterization of a compensating wheat–Thinopyrum intermedium Robertsonian translocation with Sr44 resistance to stem rust (Ug99). Theor Appl Genet 126:1167–1177

    Article  PubMed  CAS  Google Scholar 

  • Mago R, Zhang P, Bariana HS, Verlin DC, Bansal UK, Ellis JG, Dundas IS (2009) Development of wheat lines carrying stem rust resistance gene Sr39 with reduced Aegilops speltoides chromatin and simple PCR markers for marker-assisted selection. Theor Appl Genet 119:1441–1450

    Article  PubMed  CAS  Google Scholar 

  • Mago R, Verlin D, Zhang P, Bansal U, Bariana H, Jin Y, Ellis J, Hoxha S, Dundas I (2013) Development of wheat–Aegilops speltoides recombinants and simple PCR-based markers for Sr32 and a new stem rust resistance gene on the 2S#1 chromosome. Theor Appl Genet 126:2943–2955

    Article  PubMed  CAS  Google Scholar 

  • Marais GF, Kotze L, Eksteen A (2010) Allosyndetic recombinants of the Aegilops peregrina-derived Lr59 translocation in common wheat. Plant Breeding 129:356–361

    CAS  Google Scholar 

  • Nazari K, Mafi M, Yahyaoui A, Singh RP, Park RF (2009) Detection of wheat stem rust (Puccinia graminis f. sp tritici) race TTKSK (Ug99) in Iran. Plant Dis 93:317

    Article  Google Scholar 

  • Niu Z, Klindworth DL, Friesen TL, Chao S, Jin Y, Cai X, Xu SS (2011) Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering. Genetics 187:1011–1021

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Olson EL, Brown-Guedira G, Marshall DS, Jin Y, Mergoum M, Lowe I, Dubcovsky J (2010) Genotyping of U.S. wheat germplasm for presence of stem rust resistance genes Sr24, Sr36 and Sr1RS Amigo. Crop Sci 50:668–675

    Article  CAS  Google Scholar 

  • Park R, Fetch T, Hodson D, Jin Y, Nazari K, Prashar M, Pretorius Z (2011) International surveillance of wheat rust pathogens: progress and challenges. Euphytica 179:109–117

    Article  Google Scholar 

  • Pretorius ZA, Singh RP, Wagoire WW, Payne TS (2000) Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Dis 84:203

    Article  Google Scholar 

  • Prins R, Marais GF, Janse BJH, Pretorius ZA, Marais AS (1996) A physical map of the Thinopyrum-derived Lr19 translocation. Genome 39:1013–1019

    Article  PubMed  CAS  Google Scholar 

  • Qi LL, Friebe B, Zhang P, Gill BS (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res 15:3–19

    Article  PubMed  CAS  Google Scholar 

  • Qi LL, Pumphrey MO, Friebe B, Zhang P, Qian C, Bowden RL, Rouse MN, Jin Y, Gill BS (2011) A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effective against race Ug99 from Dasypyrum villosum into bread wheat. Theor Appl Genet 123:159–167

    Article  PubMed  CAS  Google Scholar 

  • Roberts MA, Reader SM, Dalgliesh C, Miller TE, Foote TN, Fish LJ, Snape JW, Moore G (1999) Induction and characterization of Ph1 wheat mutants. Genetics 153:1909–1918

    PubMed Central  PubMed  CAS  Google Scholar 

  • Roelfs AP, Martens JW (1988) An international system of nomenclature for Puccinia graminis f. sp. tritici. Phytopathology 78:526–533

    Article  Google Scholar 

  • Santra M, Rao VS, Tamhankar SA (2003) Modification of AACC procedure for measuring β-carotene in early generation durum wheat. Cereal Chem 80:130–131

    Article  CAS  Google Scholar 

  • Singh RP, Hodson DP, Jin Y, Huerta-Espino J, Kinyua MG, Wanyera R, Njau P, Ward RW (2006) Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 1:No. 054

    Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Njau P, Wanyera R, Herrera-Foessel SA, Ward RW (2008) Will stem rust destroy the world’s wheat crop? Adv Agron 98:271–309

    Article  CAS  Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V (2011) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 49:465–481

    Article  PubMed  CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Guyomarc’h H, Baron C, Gandon B, Chiquet V, Arlignenave F, Edwards K, Foisset V, Dufour P (2001) Improvement of the genetic maps of wheat using new microsatellite markers. Plant & Animal Genome IX Final Abstracts guide, Applied Biosystem Press, Foster City, Calif., USA, p 167

  • Stakman EC (1962) Identification of physiologic races of Puccinia graminis var. tritici. In: Stakman EC, Stewart DM, Loegering WQ. U.S. Agricultural Research Service, Entomology Research Branch, E617, Washington, p 53

  • Tsilo TJ, Chao S, Jin Y, Anderson JA (2009) Identification and validation of SSR markers linked to the stem rust resistance gene Sr6 on the short arm of chromosome 2D in wheat. Theor Appl Genet 118:515–524

    Article  PubMed  CAS  Google Scholar 

  • Tsilo TJ, Hareland GA, Chao S, Anderson JA (2011) Genetic mapping and QTL analysis of flour color and milling yield related traits using recombinant inbred lines in hard red spring wheat. Crop Sci 51:237–246

    Article  Google Scholar 

  • Turner MK, DeHaan LR, Jin Y, Anderson JA (2013) Wheatgrass-wheat partial amphiploids as a novel source of stem rust and fusarium head blight resistance. Crop Sci 53:1994–2005

    Google Scholar 

  • Visser B, Herselman L, Park RF, Karaoglu H, Bender CM, Pretorius ZA (2011) Characterization of two new Puccinia graminis f. sp. tritici races within the Ug99 lineage in South Africa. Euphytica 179:119–127

    Article  Google Scholar 

  • Wanyera R, Kinyua MG, Jin Y, Singh RP (2006) The spread of stem rust caused by Puccinia graminis f. sp tritici, with virulence on Sr31 in wheat in Eastern Africa. Plant Dis 90:113

    Article  Google Scholar 

  • Xu SS, Jin Y, Klindworth DL, Wang RRC, Cai X (2009) Evaluation and characterization of seedling resistances to stem rust Ug99 races in wheat-alien species derivatives. Crop Sci 49:2167–2175

    Article  Google Scholar 

  • Yu GT, Cai X, Harris MO, Gu YQ, Luo M-C, Xu SS (2009) Saturation and comparative mapping of the genomic region harboring Hessian fly resistance gene H26 in wheat. Theor Appl Genet 118:1589–1599

    Article  PubMed  CAS  Google Scholar 

  • Yu GT, Zhang Q, Klindworth DL, Friesen TL, Knox R, Jin Y, Zhong S, Cai X, Xu SS (2010a) Molecular and cytogenetic characterization of wheat introgression lines carrying the stem rust resistance gene Sr39. Crop Sci 50:1393–1400

    Article  CAS  Google Scholar 

  • Yu L-X, Liu S, Anderson JA, Singh RP, Jin Y, Dubcovsky J, Brown-Guidera G, Bhavani S, Morgounov A, He Z, Huerta-Espino J, Sorrells ME (2010b) Haplotype diversity of stem rust resistance loci in uncharacterized wheat lines. Mol Breed 26:667–680

    Article  Google Scholar 

  • Zhang W, Dubcovsky J (2008) Association between allelic variation at the Phytoene synthase 1 gene and yellow pigment content in the wheat grain. Theor Appl Genet 116:635–645

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Shen X, Hao Y, Cai J, Ohm HW, Kong L (2011) A genetic map of Lophopyrum ponticum chromosome 7E, harboring resistance genes to Fusarium head blight and leaf rust. Theor Appl Genet 122:263–270

    Article  PubMed  CAS  Google Scholar 

  • Zhong S, Leng Y, Friesen TL, Faris JD, Szabo LJ (2009) Development and characterization of expressed sequence tag-derived microsatellite markers for the wheat stem rust fungus Puccinia graminis f. sp. tritici. Phytopathology 99:282–289

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. G. Francois Marais and Dr. Lili Qi for critically reviewing the manuscript. The authors also thank Mary Osenga, Rachel McArthur, Danielle Holmes, and Xiaohong Jiang for technical support. This research was supported in part by funds to S. S. X. provided through a grant from the Bill & Melinda Gates Foundation to Cornell University for the Borlaug Global Rust Initiative (BGRI) Durable Rust Resistance in Wheat (DRRW) Project and the USDA-ARS CRIS Project No. 5442-22000-037-00D. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Conflict of interest

All authors have no conflict of interest.

Ethical standards

The experiments were performed in compliance with the current laws of the USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven S. Xu.

Additional information

Communicated by H.-C. Jing.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2014_2272_MOESM1_ESM.jpg

Fig. S1. Electropherograms showing the size of the PCR products of six SSR markers on the long arm of chromosome 7D (Xbarc172, Xwmc150, Xbarc121, Xwmc797, Xbarc111, and Xcfa2040) amplified from KS10-2, KS24-1, Thatcher, Chinese Spring (CS), and three CS nullisomic-tetrasomic (NT) lines. The NT lines N7AT7D, N7BT7D, and N7DT7B represent nullisomic for 7A and tetrasomic for 7D, nullisomic for 7B and tetrasomic for 7D, and nullisomic for 7D and tetrasomic for 7B, respectively. Fragment sizes include a 20-bp M13 primer tail. The peak represents the PCR products, whereas the scale on the horizontal and vertical axis represent fragment sizes in base pair (bp) and fluorescent signal intensity, respectively. (JPEG 3667 kb)

122_2014_2272_MOESM2_ESM.jpg

Fig. S2. Validation of SSR marker Xcfa2040 and STS marker Xrwgs30 using common wheat varieties. 1) Jimai 22, 2) Shanrong 1, 3) Jinan 17, 4) Jinan 177, 5) Zhengmai 9023, 6) Amidon, 7) Howard, 8) Alsen, 9) Grandin, 10) Glenn, 11) Faller, 12) Glupro, 13) Ernest, 14) Steele-ND, 15) Reeder, 16) Mott, 17) Kulm, 18) Parshall, 19) Granger, 20) Brick, 21) Russ, 22) Briggs, 23) Traverse, 24) Sabin, 25) Oklee, 26) Ulen, 27) Ada, 28) Tom, 29) Newton, 30) IL06-14262, 31) Thatcher, 32) Chinese Spring, and 33) KS10-2. (JPEG 391 kb)

Supplementary material 3 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, Z., Klindworth, D.L., Yu, G. et al. Development and characterization of wheat lines carrying stem rust resistance gene Sr43 derived from Thinopyrum ponticum . Theor Appl Genet 127, 969–980 (2014). https://doi.org/10.1007/s00122-014-2272-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2272-4

Keywords

Navigation