Skip to main content
Log in

Identification of QTLs with additive, epistatic and QTL × development interaction effects for seed dormancy in rice

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Seed dormancy (SD) is an important agronomic trait affecting crop yield and quality. In this study, one rice population of recombinant inbred lines (RILs) was used to determine the genetic characteristics of SD at the early (4 weeks after heading), middle (5 weeks after heading) and late (6 weeks after heading) development stages. The level of SD decreased with the process of seed development, and the SD was significantly affected by the heading date (HD) and temperature at the early and middle development stages. A total of eight additive quantitative trait loci (QTLs) for SD were identified at three development stages, and more QTLs were expressed at the early and late development stages. Among them, four, one and three additive QTLs were identified at the early, middle and late development stages, respectively. Epistatic QTLs and QTL-by-development interactions were detected by the joint analysis of multi-development phenotypic values, and one additive and two epistatic QTLs were identified. The phenotypic variation of SD explained by each additive, epistatic QTL and QTL × development interaction ranged from 8.0 to 13.5 %, 0.7 to 3.9 % and 1.3 to 2.8 %, respectively. One major QTL qSD7.1 for SD was tightly linked to the major QTL qHD7.4 for HD, which might be applied to reveal the relationship of SD and HD. By comparing chromosomal positions of these additive QTLs with those previously identified, five additive QTLs qSD1.1, qSD2.1, qSD2.2, qSD4.1 and qSD4.2 might represent novel genes. The best three cross combinations for the development of RIL populations were predicted to improve SD. The selected RILs and the identified QTLs might be applicable to improve the rice pre-harvest sprouting tolerance by the marker-assisted selection approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GP:

Germination percentage

HD:

Heading date

MAS:

Marker-assisted selection

PHS:

Pre-harvest sprouting

QTLs:

Quantitative trait loci

RILs:

Recombinant inbred lines

SD:

Seed dormancy

SSR:

Simple sequence repeats

References

  • Bentsink L, Jowett J, Hanhart CJ, Koornneef M (2006) Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc Natl Acad Sci USA 103:17042–17047

    Article  CAS  PubMed  Google Scholar 

  • Biddulph TB, Plummer JA, Setter TL, Mares DJ (2007) Influence of high temperature and terminal moisture stress on dormancy in wheat (Triticum aestivum L.). Field Crops Res 103:139–153

    Article  Google Scholar 

  • Buraas T, Skinnes H (1985) Development of seed dormancy in barley, wheat and triticale under controlled conditions. Acta Agric Scand 35:233–244

    Article  Google Scholar 

  • Chen X, Temnykh S, Xu Y, Cho YG, McCouch SR (1997) Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theor Appl Genet 95:553–567

    Article  CAS  Google Scholar 

  • Chen CX, Cai SB, Bai GH (2008) A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace. Mol Breed 21:351–358

    Article  CAS  Google Scholar 

  • Chiang GCK, Bartsch M, Barua D, Nakabayashi K, Debieu M, Kronholm I, Koornneef M, Soppe WJJ, Donohue K, De Meaux J (2011) DOG1 expression is predicted by the seed maturation environment and contributes to geographical variation in germination in Arabidopsis thaliana. Mol Ecol 20:3336–3349

    Article  CAS  PubMed  Google Scholar 

  • Dellaporta SL, Wood T, Hicks TB (1983) A plant DNA mini preparation: version II. Plant Mol Bio Rep 1:19–21

    Article  CAS  Google Scholar 

  • Dong Y, Tsuzukia E, Kamiuntena H, Teraoa H, Lina D, Matsuoa M, Zheng Y (2003) Identification of quantitative trait loci associated with pre-harvest sprouting resistance in rice (Oryza sativa L.). Field Crops Res 81:133–139

    Article  Google Scholar 

  • Fenner M (1991) The effects of the parent environment on seed germinability. Seed Sci Res 1:75–84

    Google Scholar 

  • Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415

    Article  CAS  PubMed  Google Scholar 

  • Footitt S, Douterelo-Soler I, Clay H, Finch-Savage WE (2011) Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways. Proc Natl Acad Sci USA 108:20236–20241

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Clancy JA, Han F, Prada D, Kleinhofs A, Ullrich SE (2003) Molecular dissection of a dormancy QTL region near the chromosome 7 (5H) L telomere in barley. Theor Appl Genet 107:552–559

    Article  CAS  PubMed  Google Scholar 

  • Gao FY, Ren GJ, Lu XJ, Sun SX, Li HJ, Gao YM, Lou H, Yan WG, Zhang YZ (2008) QTL analysis for resistance to preharvest sprouting in rice (Oryza sativa). Plant Breed 127:268–273

    Article  Google Scholar 

  • Graeber K, Nakabayashi K, Miatton E, Leubner-Metzger G, Soppe WJ (2012) Molecular mechanisms of seed dormancy. Plant Cell Environ 35:1769–1786

    Article  CAS  PubMed  Google Scholar 

  • Gu XY, Kianian SF, Foley ME (2004) Multiple loci and epistases control genetic variation for seed dormancy in weedy rice (Oryza sativa L.). Genetics 166:1503–1516

    Article  CAS  PubMed  Google Scholar 

  • Gu XY, Liu T, Feng J, Suttle JC, Gibbons J (2010) The qSD12 underlying gene promotes abscisic acid accumulation in early developing seeds to induce primary dormancy in rice. Plant Mol Biol 73:97–104

    Article  CAS  PubMed  Google Scholar 

  • Gualano NA, Benech-Arnold RL (2009) Predicting pre-harvest sprouting susceptibility in barley: looking for ‘‘sensitivity windows’’ to temperature throughout grain filling in various commercial cultivars. Field Crops Res 114:35–44

    Article  Google Scholar 

  • Guo L, Zhu L, Xu Y, Zeng D, Wu P, Qian Q (2004) QTL analysis of seed dormancy in rice (Oryza sativa L.). Euphytica 140:155–162

    Article  CAS  Google Scholar 

  • Hillhorst HWM (1995) A critical update on seed dormancy I. Primary dormancy. Seed Sci Res 5:61–73

    Article  Google Scholar 

  • Hori K, Sugimoto K, Nonoue Y, Ono N, Matsubara K, Yamanouchi U, Abe A, Takeuchi Y, Yano M (2010) Detection of quantitative trait loci controlling pre-harvest sprouting resistance by using backcrossed populations of japonica rice cultivars. Theor Appl Genet 120:1547–1557

    Article  PubMed Central  PubMed  Google Scholar 

  • Kendall SL, Hellwege A, Marriot P, Whalley C, Graham IA, Penfield S (2011) Induction of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and CBF transcription factors. Plant Cell 23:2568–2580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  PubMed  Google Scholar 

  • Li H, Ribaut JM, Li Z, Wang J (2008) Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet 116:243–260

    Article  PubMed  Google Scholar 

  • Lin SY, Sasaki T, Yano M (1998) Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L., using backcross inbred lines. Theor Appl Genet 96:997–1003

    Article  CAS  Google Scholar 

  • Liu S, Bai G (2010) Dissection and fine mapping of a major QTL for preharvest sprouting resistance in white wheat Rio Blanco. Theor Appl Genet 121:1395–1404

    Article  PubMed  Google Scholar 

  • Lu B, Xie K, Yang C, Wang S, Liu X, Zhang L, Jiang L, Wan J (2011) Mapping two major effect grain dormancy QTL in rice. Mol Breeding 28:453–462

    Article  CAS  Google Scholar 

  • Martinez-Andujar C, Ordiz MI, Huang Z, Nonogaki M, Beachy RN, Nonogaki H (2011) Induction of 9-cis-epoxycarotenoid dioxygenase in Arabidopsis thaliana seeds enhances seed dormancy. Proc Natl Acad Sci USA 108:17225–17229

    Article  CAS  PubMed  Google Scholar 

  • McCouch SR, CGSNL (Committee on Gene Symbolization, Nomenclature, Linkage, Rice Genetics Cooperative) (2008) Gene nomenclature system for rice. Rice 1:72–84

    Article  Google Scholar 

  • McCouch SR, Teytelman L, Xu YB, Lobos KB, Clare K, Walton M, Fu BY, Maghirang R, Li ZK, Xing YZ, Zhang QF, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2,240 new SSR markers for rice (Oryza sativa L.). DNA Res 6:199–207

    Article  Google Scholar 

  • Miura K, Araki H (1999) Effect of temperature during the ripening period on the induction of secondary dormancy in rice seeds (Oryza sativa L.). Breed Sci 49:7–10

    Article  Google Scholar 

  • Miyoshi K, Sato T (1997a) The effects of ethanol on the germination of seeds of japonica and indica rice (Oryza sativa L.) under anaerobic and aerobic conditions. Ann Bot 79:391–395

    Article  CAS  Google Scholar 

  • Miyoshi K, Sato T (1997b) Removal of the pericarp and tests of seeds of japonica and indica rice (Oryza sativa) at various oxygen concentrations has opposite effects on germination. Physiol Plant 99:1–6

    Article  CAS  Google Scholar 

  • Miyoshi K, Sato T, Takahashi N (1996) Differences in the effects of dehusking during formation of seeds on the germination of seeds of indica and japonica rice (Oryza sativa L.). Ann Bot 77:599–604

    Article  Google Scholar 

  • Nicholls PB (1982) Influence of temperature during grain growth and ripening of barley on the subsequent response to exogenous gibberellic acid. Aust J Plant Physiol 9:373–383

    Article  CAS  Google Scholar 

  • Niu Y, Xu Y, Liu XF, Yang SX, Wei SP, Xie FT, Zhang YM (2013) Association mapping for seed size and shape traits in soybean cultivars. Mol Breed 31:785–794

    Article  CAS  Google Scholar 

  • Osa M, Kato K, Mori M, Shindo C, Torada A, Miura H (2003) Mapping QTLs for seed dormancy and the Vp1 homologue on chromosome 3A in wheat. Theor Appl Genet 106:1491–1496

    CAS  PubMed  Google Scholar 

  • Sanguinetti CJ, Neto ED, Simpson AJ (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17:914–921

    CAS  PubMed  Google Scholar 

  • Schuurink RC, Van Beckum JMM, Heidekamp F (1992) Modulation of grain dormancy in barley by variation of plant growth conditions. Hereditas 117:137–143

    Article  Google Scholar 

  • Sugimoto K, Takeuchi Y, Ebana K, Miyao A, Hirochika H, Hara N, Ishiyama K, Kobayashi M, Ban Y, Hattori T, Yano M (2010) Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proc Natl Acad Sci USA 107:5792–5797

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi Y, Lin SY, Sasaki T, Yano M (2003) Fine linkage mapping enables dissection of closely linked quantitative trait loci for seed dormancy and heading in rice. Theor Appl Genet 101:1174–1180

    Article  Google Scholar 

  • Temnykh S, Park WD, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet 100:697–712

    Article  CAS  Google Scholar 

  • Ullrich SE, Clancy JA, del Blanco IA, Lee H, Jitkov VA, Han F, Kleinhofs A, Matsui K (2008) Genetic analysis of preharvest sprouting in a six-row barley cross. Mol Breed 21:249–259

    Article  Google Scholar 

  • Wan JM, Cao YJ, Wang CM, Ikehashi H (2005) Quantitative trait loci associated with seed dormancy in rice. Crop Sci 45:712–716

    Article  CAS  Google Scholar 

  • Wang Z, Chen Z, Cheng J, Lai Y, Wang J, Bao Y, Huang J, Zhang H (2012a) QTL analysis of Na+ and K+ concentrations in roots and shoots under different levels of NaCl stress in rice (Oryza sativa L.). PLoS One 7:e51202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Z, Cheng J, Chen Z, Huang J, Bao Y, Wang J, Zhang H (2012b) Identification of QTLs with main, epistatic and QTL × environment interaction effects for salt tolerance in rice seedlings under different salinity conditions. Theor Appl Genet 125:807–815

    Article  CAS  PubMed  Google Scholar 

  • Xi W, Liu C, Hou X, Yu H (2010) MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell 22:1733–1748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang J, Hu CC, Ye XZ, Zhu J (2005) QTLNetwork 2.0. Available at http://ibi.zju.edu.cn/software/qtlnetwork. Institute of Bioinformatics, Zhejiang University, Hangzhou, China

  • Yasue T, Asai Y (1968) Studies on the dormancy and viviparous germination in rice seed. Res Bull Fac Agric Gifu Univ 26:1–12

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 31271806; 31000748), the Special Fund for Agro-scientific Research in the Public Interest (Grant No. 201203052), the Fundamental Research Funds for the Central Universities (Grant No. KYZ201202-9) and the 111 Project.

Conflict of interest

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhoufei Wang or Hongsheng Zhang.

Additional information

L. Wang and J. Cheng contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Cheng, J., Lai, Y. et al. Identification of QTLs with additive, epistatic and QTL × development interaction effects for seed dormancy in rice. Planta 239, 411–420 (2014). https://doi.org/10.1007/s00425-013-1991-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-1991-0

Keywords

Navigation