Skip to main content
Log in

Association mapping for seed size and shape traits in soybean cultivars

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Seed size and shape traits are closely related to seed yield and appearance quality in soybean (Glycine max L.). Previous studies were mainly derived from bi-parental segregating populations and relatively little is known about the results in soybean cultivars. In this study, 257 soybean cultivars obtained by stratified random sampling from six geographic ecotypes in China were used to carry out association mapping for these traits using information from 135 simple sequence repeat markers and an epistatic association mapping approach implemented using an empirical Bayes algorithm. In this analysis, seed size was measured by seed length (SL), width (SW) and thickness (ST), and seed shape was evaluated by seed length-to-width (SLW), length-to-thickness (SLT) and width-to-thickness (SWT) ratios, in 2008–2010. A total of 59 main-effect quantitative trait loci (QTL) and 31 QTL-by-environment interactions were identified. Among them, 25 QTL were associated simultaneously with at least two traits; 80 QTL (90 %) could be confirmed by enriched compression mixed linear model analysis; and the size for a large number of detected QTL was minor, except for qSL-5, qSW-7e, qST-5-2 and qSLW-2. According to the estimates for the allelic effects of the detected QTL, elite alleles could be mined: for example, the 307-bp allele of QTL linked to satt453 was the best for seed length. These elite alleles could be used to design parental combinations; e.g., the cross of Zhenghezhibanzi and Nannongdahuangdou might improve seed length, and the combination of cultivars Lindou10, Deqingxiangzhudou, Ninghaixiazhidou, Zhenghezhibanzi, 0803, Shangqiu7605 and 0831 might pyramid 42 elite alleles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Cober ER, Voldeng HD, Fregeau-Reid JA (1997) Heritability of seed shape and seed size in soybean. Crop Sci 37:1767–1769

    Article  Google Scholar 

  • Cui ZL, Gai JY, Thomas E, Carter TE, Qiu JY, Zhao TJ (1998) The released Chinese soybean cultivars and their pedigree analysis (1923–1995). Chinese Agricultural Press, Beijing

    Google Scholar 

  • Egli DB (2008) Comparison of corn and soybean yields in the United States: historical trends and future prospects. Agron J 100:S79–S88

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  PubMed  CAS  Google Scholar 

  • Fan CC, Xing YZ, Mao HL, Lu TT, Han B, Xu CG, Li XH, Zhang QF (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    Article  PubMed  CAS  Google Scholar 

  • Frary A, Nesbitt C, Frary A, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB et al (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 298:85–88

    Article  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    Article  PubMed  CAS  Google Scholar 

  • Hansen M, Kraft T, Ganestam S, Säll T, Nillson NO (2001) Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers. Genet Res 77:61–66

    Article  PubMed  CAS  Google Scholar 

  • Hauser MT, Harr B, Schlötterer C (2001) Trichome distribution in Arabidopsis thaliana and its close relative Arabidopsis lyrata: molecular analysis of the candidate gene GLABROUS1. Mol Biol Evol 18:1754–1763

    Google Scholar 

  • Hoeck JA, Fehr WR, Shoemaker RC (2003) Molecular marker analysis of seed size in soybean [J]. Crop Sci 43:68–74

    Article  Google Scholar 

  • Jun TH, Van K, Kim MY, Lee SH (2008) Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica 162:179–191

    Article  CAS  Google Scholar 

  • Kim H, Lee S, Park K, Lee Y (2000) Identification of quantitative trait loci associated with seed size and weight in soybean. Korean J Crop Sci 45:227–231

    Google Scholar 

  • Li M (2011) Functional mapping of rice tillering and optimization of compression mixed linear model approach. PhD dissertation, Nanjing Agricultural University

  • Li CD, Jiang HW, Zhang WB, Qiu PC, Liu CY, Li WF, Gao YL, Chen QS, Hu GH (2008) QTL analysis of seed and pod traits in soybean. Mol Plant Breed 6:1091–1100

    CAS  Google Scholar 

  • Li HN, Wang X, Li GJ, Cheng LG, He XH, Zhang GZ, Zhang YM (2009) Mixed major-gene plus polygenes inheritance analysis for seed length and width in soybean. Soybean Sci 28(1):16–20

    Google Scholar 

  • Li YH, Smulders MJM, Chang RZ, Qiu LJ (2011) Genetic diversity and association mapping in a collection of selected Chinese soybean accessions based on SSR marker analysis. Conserv Genet 12:1145–1157

    Article  Google Scholar 

  • Liang HZ, Li WD, Wang H, Fang XJ (2005) Genetic effects on seed traits in soybean. Acta Genet Sin 32:1199–1204

    PubMed  Google Scholar 

  • Liang HZ, Wang SF, Yu YL, Wang TF, Gong PT, Fang XJ, Liu XY, Zhao SJ, Zhang MC, Li WD (2008) Mapping quantitative trait loci for six seed shape traits in soybean. Henan Agric Sci 45:54–60

    Google Scholar 

  • Lipp M, Brodmann P, Pietsch K, Pauwels J, Anklam E (1999) IUPAC collaborative trail study of a method to detect genetically modified soybeans and maize in dried powder. J AOAC Int 82:923–928

    PubMed  CAS  Google Scholar 

  • Liu J, Van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA 99:13302–13306

    Article  PubMed  CAS  Google Scholar 

  • Lü HY, Liu XF, Wei SP, Zhang YM (2011) Epistatic association mapping in homozygous crop cultivars. PLoS ONE 6:e17773

    Article  PubMed  Google Scholar 

  • Mansur LM, Lark KG, Kross H (1993) Interval mapping of quantitative trait loci for reproductive, morphological and seed traits of soybean (Glyine max L.). Theor Appl Genet 86:907–913

    CAS  Google Scholar 

  • Mansur LM, Orf JH, Chase K, Jarvik T, Cregan PB, Lark KG (1996) Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci 36:1327–1336

    Article  CAS  Google Scholar 

  • Mao HL, Sun SY, Yao JL, Wang C, Yu S, Xu CG, Li XH, Zhang QF (2010) Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA 107:19579–19584

    Article  PubMed  CAS  Google Scholar 

  • Nelson RL, Wang P (1989) Variation and evaluation of seed shape in soybean. Crop Sci 29:147–150

    Article  Google Scholar 

  • Niu Y, Xie FT, Bu SH, Xie SQ, Han SF, Geng QC, Liu B, Zhang YM (2013) Fine mapping of quantitative traits loci for seed shape traits in soybean. Acta Agron Sin 39 (in press)

  • Orf JH, Chase K, Jarvik T, Mansur LM, Cregan PB, Adler FR, Lark KG (1999) Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci 39:1642–1651

    Article  Google Scholar 

  • Palaisa KA, Morgante MM, Williams M, Rafalski A (2003) Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell 15:1795–1806

    Article  PubMed  CAS  Google Scholar 

  • Salas P, Oyarzo-Llaipen JC, Wang D, Chase K, Mansur L (2006) Genetic mapping of seed shape in three populations of recombinant inbred lines of soybean (Glycine max L. Merr.). Theor Appl Genet 113:1459–1466

    Article  PubMed  CAS  Google Scholar 

  • Santos FR, Pena SDJ, Epplen JT (1993) Genetic and population study of an Y-linked tetranucleotide repeat DNA polymorphism with a simple non-isotopic technique. Hum Genet 90:655–656

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute Inc (2011) SAS/STAT user’s guide, version 9.30. SAS Institute Inc, Cary

    Google Scholar 

  • Segura V, Vilhjálmsson BJ, Platt A et al (2012) An efficient multi-locus mixed model approach for genome-wide association studies in structured populations. Nat Genet 44:825–830

    Article  PubMed  CAS  Google Scholar 

  • Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40:1023–1028

    Article  PubMed  CAS  Google Scholar 

  • Singh RK, Bhat KV, Bhatia VS, Mohapatra T, Singh NK (2008) Association mapping for photoperiod insensitivity ait in soybean. Natl Acad Sci Lett 31:281–284

    Google Scholar 

  • Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JE, Cregan PB (2004) A new integrated genetic linkage map of the soybean. Theor Appl Genet 109:122–128

    Article  PubMed  CAS  Google Scholar 

  • Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    Article  PubMed  CAS  Google Scholar 

  • Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H, Padhukasahasram B, Bustamante C, Yoshimura A, Doi K et al (2009) Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 182:1323–1334

    Article  PubMed  CAS  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  PubMed  CAS  Google Scholar 

  • Van der Knaap E, Tanksley SD (2001) Identification and characterization of a novel locus controlling early fruit development in tomato. Theor Appl Genet 103:353–358

    Article  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Wan JM (2006) Perspectives of molecular design breeding in crops. Acta Agron Sin 32:455–462

    CAS  Google Scholar 

  • Wan XY, Weng JF, Zhai HQ, Wang J, Lei C, Liu X, Guo T, Jiang L, Su N, Wan J (2008) Quantitative trait loci analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hot spot region on Chromosome 5. Genetics 179:2239–2252

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Wan X, Crossa J, Crouch J, Weng J, Zhai H, Wan J (2006) QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines. Genet Res 88:93–104

    Article  PubMed  CAS  Google Scholar 

  • Wang J, McClean PE, Lee R, Goos RJ, Helms T (2008) Association mapping of iron deficiency chlorosis loci in soybean (Glycine max L. Merr.) advanced breeding lines. Theor Appl Genet 116:777–787

    Article  PubMed  CAS  Google Scholar 

  • Weng JF, Gu SH, Wan XY, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo XP et al (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res 18:1199–1209

    Article  PubMed  CAS  Google Scholar 

  • Wilson LM, Whitt SR, Ibanez AM, Rocheford TR, Goodman MM, Buckler IVE (2004) Dissection of maize kernel composition and starch production by candidate associations. Plant Cell 16:2719–2733

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Li HN, Li GJ, Wang X, Cheng LG, Zhang YM (2011) Mapping quantitative trait loci for seed size traits in soybean (Glycine max L. Merr.). Theor Appl Genet 122:581–594

    Article  PubMed  Google Scholar 

  • Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  PubMed  CAS  Google Scholar 

  • Zhang WK, Wang YJ, Luo GZ, Zhang JS, He CY, Wu XL, Gai JY, Chen SY (2004) QTL mapping of ten agronomic traits on the soybean (Glycine max (L.) Merr.) genetic map and their association with EST markers. Theor Appl Genet 108:1131–1139

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y-M, Mao YC, Xie CQ et al (2005) Mapping QTL using naturally occurring genetic variance among commercial inbred lines of maize (Zea mays L.). Genetics 169(4):2267–2275

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK et al (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–360

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Stephens M (2012) Genome-wide efficient mixed model analysis for association studies. Nat Genet 44:821–824

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Basic Research Program of China grant 2011CB109306; the National Natural Science Foundation of China grant 30971848; the Fundamental Research Funds for the Central Universities grants KYT201002; a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Specialized Research Fund for the Doctoral Program of Higher Education grants 20100097110035 and 20120097110023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Ming Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 472 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, Y., Xu, Y., Liu, XF. et al. Association mapping for seed size and shape traits in soybean cultivars. Mol Breeding 31, 785–794 (2013). https://doi.org/10.1007/s11032-012-9833-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-012-9833-5

Keywords

Navigation