Skip to main content
Log in

Ectopic localization of auxin and cytokinin in tobacco seedlings by the plant-oncogenic AK-6b gene of Agrobacterium tumefaciens AKE10

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The oncogenic 6b gene of Agrobacterium tumefaciens induces a number of morphological and metabolic alterations in plants. Although molecular functions associated with the 6b genes have been proposed, including auxin transport, sugar transport, transcriptional regulation, and miRNA metabolism, so far an unequivocal conclusion has not been obtained. We investigated the association between auxin accumulation and tumor development of the tobacco seedlings expressing the AK-6b gene under the control of the dexamethasone-inducible promoter. Indole-3-acetic acid (IAA) localization was examined by immunochemical staining with monoclonal antibody against IAA and by histochemical analysis using the IAA-specific induced construct, DR5::GUS (β-glucuronidase). Both procedures indicated that IAA preferentially accumulated in the tumorous protrusions as well as in newly developing vascular bundles in the tumors. Furthermore, true leaves also showed abaxial IAA localization, leading to altered leaves in which the adaxial and abaxial identities were no longer evident. Co-localization of cytokinin and auxin in the abaxial tumors was verified by immunochemical staining with an antibody against cytokinin. Treatment of AK-6b-seedlings with N-1-naphthylphthalamic acid, an inhibitor of polar auxin transport, promoted the morphological severity of phenotypes, whereas 1-naphthoxyacetic acid, a specific auxin influx carrier inhibitor, induced tumor regression on cotyledons and new tumorous proliferations on hypocotyls. Prominent accumulation of both auxin and cytokinin was observed in both regressed and newly developing tumors. We suggest from these results that modulation of auxin/cytokinin localization as a result of AK-6b gene expression is responsible for the tumorous proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

DAPI:

4′,6-Diamidino-2-phenylindole, dihydrochloride

Dex:

Dexamethasone

GUS:

β-Glucuronidase

h:

Hour(s)

Hgr:

Hygromycin

IAA:

Indole-3-acetic acid

Kam:

Kanamycin

min:

Minute(s)

NOA:

1-Naphthoxyacetic acid

NPA:

N-1-Naphthylphthalamic acid

t-ZR:

trans-Zeatin riboside

t-Z:

trans-Zeatin

t-ZRMP:

trans-Zeatin riboside 5′-monophosphate

References

  • Akama K, Shiraishi H, Ohta S, Nakamura K, Okada K, Shimura Y (1992) Efficient transformation of Arabidopsis thaliana: comparison of the efficiencies with various organs, plant ecotypes and Agrobacterium strains. Plant Cell Rep 12:7–11

    Article  CAS  Google Scholar 

  • Akiyoshi DE, Klee H, Amasino RM, Nester EW, Gordon MP (1984) T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci USA 81:5994–5998

    Article  PubMed  CAS  Google Scholar 

  • Aoyama T, Chua N-H (1997) A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J 11:605–612

    Article  PubMed  CAS  Google Scholar 

  • Avsian-Kretchmer O, Cheng J-C, Chen L, Moctezuma E, Sung Z (2002) Indole acetic acid distribution coincides with vascular differentiation pattern during Arabidopsis leaf ontogeny. Plant Physiol 130:199–209

    Article  PubMed  CAS  Google Scholar 

  • Canaday J, Gérard JC, Crouzet P, Otten L (1992) Organization and functional analysis of three T-DNAs from the vitopine Ti plasmid pTiS4. Mol Gen Genet 235:292–303

    Article  PubMed  CAS  Google Scholar 

  • Chilton M-D, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271

    Article  PubMed  CAS  Google Scholar 

  • Clément B, Perot J, Geoffroy P, Legrand M, Zon J, Otten L (2007) Abnormal accumulation of sugars and phenolics in tobacco roots expressing the Agrobacterium T-6b oncogene and the role of these compounds in 6b-induced growth. Mol Pant Microbe Interact 20:53–62

    Article  Google Scholar 

  • Eklöf S, Ǻstot C, Blackwell J, Moritz T, Olsson O, Sandberg G (1997) Auxin-cytokinin interactions in wild-type and transgenic tobacco. Plant Cell Physiol 38:225–235

    Article  Google Scholar 

  • Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13:1768–1774

    Article  PubMed  CAS  Google Scholar 

  • Eshed Y, Izhaki A, Baum SF, Floyd SK, Bowman JL (2004) Asymmetric leaf development and blade expansion in Arabidopsis are mediated KANADI and YABBY activities. Development 131:2997–3006

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G (2003) Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature 426:147–153

    Article  PubMed  CAS  Google Scholar 

  • Gális I, Šimek P, Macas J, Zahradníčková H, Vlasák J, Wabiko H, Van Dongen W, Van Onckelen HA, Ondřej M (1999) The Agrobacterium tumefaciens C58-6b gene confers resistance to N-benzyladenine without modifying cytokinin metabolism in tobacco seedlings. Planta 209:453–461

    Article  PubMed  Google Scholar 

  • Gális I, Šimek P, Van Onckelen HA, Kakiuchi Y, Wabiko H (2002) Resistance of transgenic tobacco seedlings expressing the Agrobacterium tumefaciens C58-6b gene, to growth-inhibitory levels of cytokinin is associated with elevated IAA levels and activation of phenylpropanoid metabolism. Plant Cell Physiol 43:939–950

    Article  PubMed  Google Scholar 

  • Gális I, Kakiuchi Y, Šimek P, Wabiko H (2004) Agrobacterium tumefaciens AK-6b gene modulates phenolic compound metabolism in tobacco. Phytochemistry 65:169–179

    Article  PubMed  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Garfinkel DJ, Simpson RB, Ream LW, White FF, Gordon MP, Nester EW (1981) Genetic analysis of crown gall: fine structure map of the T-DNA by site-directed mutagenesis. Cell 27:143–153

    Article  PubMed  CAS  Google Scholar 

  • Helfer A, Clément B, Michler P, Otten L (2003) The Agrobacterium oncogene AB-6b causes a graft-transmissible enation syndrome in tobacco. Plant Mol Biol 52:483–493

    Article  PubMed  CAS  Google Scholar 

  • Hooykaas PJJ, den Dulk-Ras H, Schilperoort RA (1988) The Agrobacterium tumefaciens T-DNA gene 6b is an onc gene. Plant Mol Biol 11:791–794

    Article  CAS  Google Scholar 

  • Izhaki A, Bowman JL (2007) KANADI and class III HD-Zip gene families regulate embryo patterning and modulate auxin flow during embryogenesis in Arabidopsis. Plant Cell 19:495–508

    Article  PubMed  CAS  Google Scholar 

  • Jacobs M, Rubery PH (1988) Naturally occurring auxin transport regulators. Science 241:346–349

    Article  PubMed  CAS  Google Scholar 

  • Kakiuchi Y, Gális I, Tamogami S, Wabiko H (2006) Reduction of polar auxin transport in tobacco by the tumorigenic Agrobacterium tumefaciens AK-6b gene. Planta 223:237–247

    Article  PubMed  CAS  Google Scholar 

  • Kakiuchi Y, Takahashi S, Wabiko H (2007) Modulation of the venation pattern of cotyledons of transgenic tobacco for the tumorigenic 6b gene of Agrobacterium tumefaciens AKE10. J Plant Res 120:259–268

    Article  PubMed  CAS  Google Scholar 

  • Katekar GF, Geissler AE (1975) Auxin transport inhibitors. Plant Physiol 56:645–646

    Article  PubMed  CAS  Google Scholar 

  • Kitakura S, Fujita T, Ueno Y, Terakura S, Wabiko H, Machida Y (2002) The protein encoded by oncogene 6b from Agrobacterium tumefaciens interacts with a nuclear protein of tobacco. Plant Cell 14:451–463

    Article  PubMed  CAS  Google Scholar 

  • Kitakura S, Terakura S, Yoshioka Y, Machida C, Machida Y (2008) Interaction between Agrobacterium tumefaciens oncoprotein 6b and a tobacco nucleolar protein that is homologous to TNP1 encoded by a transposable element of Antirrhinum majus. J Plant Res 121:425–433

    Article  PubMed  CAS  Google Scholar 

  • Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J 28:465–474

    Article  PubMed  CAS  Google Scholar 

  • McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709–713

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nordström A, Tarkowski P, Torkowska D, Norbaek R, Åstot C, Dolezal K, Sandberg G (2004) Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin-regulated development. Proc Natl Acad Sci USA 101:8039–8044

    Google Scholar 

  • Parry G, Delbarre A, Marchant A, Swarup R, Napier R, Perrot-Rechenmann C, Bennett MJ (2001) Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. Plant J 25:399–406

    Article  PubMed  CAS  Google Scholar 

  • Pekker I, Alvarez JP, Eshed Y (2005) Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell 17:2899–2910

    Article  PubMed  CAS  Google Scholar 

  • Ream LW, Gordon MP, Nester EW (1983) Multiple mutations in the T region of the Agrobacterium tumefaciens tumor-inducing plasmid. Proc Natl Acad Sci USA 80:1660–1664

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt D, Pesce E-R, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260

    Google Scholar 

  • Schröder G, Waffenschmidt S, Weiler EW, Schröder J (1984) The T-region of Ti plasmids codes for an enzyme synthesizing indole-3-acetic acid. Eur J Biochem 138:387–391

    Article  PubMed  Google Scholar 

  • Schwalm K, Aloni R, Langhans M, Heller W, Stich S, Ullrich CI (2003) Flavonoid-related regulation of auxin accumulation in Agrobacterium tumefaciens-induced plant tumors. Planta 218:163–178

    Article  PubMed  CAS  Google Scholar 

  • Terakura S, Kitakura S, Ishikawa M, Ueno Y, Fujita T, Machida C, Wabiko H, Machida Y (2006) Oncogene 6b from Agrobacterium tumefaciens induces abaxial cell division at late stages of leaf development and modifies vascular development in petioles. Plant Cell Physiol 47:664–672

    Article  PubMed  CAS  Google Scholar 

  • Terakura S, Ueno Y, Tagami H, Kitakura S, Machida C, Wabiko H, Aiba H, Otten L, Tsukagoshi H, Nakamura K, Machida Y (2007) An oncoprotein from the plant pathogen Agrobacterium has histone chaperone-like activity. Plant Cell 19:2855–2865

    Article  PubMed  CAS  Google Scholar 

  • Thomashow LS, Reeves S, Thomashow MF (1984) Crown gall oncogenesis: evidence that a T-DNA gene from the Agrobacterium Ti plasmid pTiA6 encodes an enzyme that catalyzes synthesis of indoleacetic acid. Proc Natl Acad Sci USA 81:5071–5075

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF, Hugly S, Buchholz WG, Thomashow LS (1986) Molecular basis for the auxin-independent phenotype of crown gall tumor tissues. Science 231:616–618

    Article  PubMed  CAS  Google Scholar 

  • Tinland B, Fournier P, Heckel T, Otten L (1992) Expression of a chimaeric heat-shock-inducible Agrobacterium 6b oncogene in Nicotiana rustica. Plant Mol Biol 18:921–930

    Article  PubMed  CAS  Google Scholar 

  • Ueda K, Kinoshita Y, Xu Z-J, Ide N, Ono M, Akahori Y, Tanaka I, Inoue M (2000) Unusual core histones specifically expressed in male gametic cells of Lilium longiflorum. Chromosoma 108:491–500

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov T, Murfett J, Hagen G, Guifoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971

    PubMed  CAS  Google Scholar 

  • Van Larebeke N, Engler G, Holsters M, Van Den Elsacker S, Zaenen I, Schilperoort RA, Schell J (1974) Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature 252:169–170

    Article  PubMed  Google Scholar 

  • Van Onckelen HA, Prinsen E, Inzé D, Rüdelsheim P, Van Lijsebettens M, Follin A, Schell J, Van Montagu M, De Greef J (1986) Agrobacterium T-DNA gene 1 codes for tryptophan-2-monooxygenase activity in tobacco crown gall cells. FEBS Lett 198:357–360

    Article  Google Scholar 

  • Wabiko H, Minemura M (1996) Exogenous phytohormone-independent growth and regeneration of tobacco plants transgenic for the 6b gene of Agrobacterium tumefaciens AKE10. Plant Physiol 112:939–951

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Soyano T, Machida S, Yang J-Y, Jung C, Chua N-H, Yuan YA (2011) Molecular insights into plant cell proliferation disturbance by Agrobacterium protein 6b. Genes Dev 25:64–76

    Article  PubMed  CAS  Google Scholar 

  • Weir TL, Stull VJ, Badri D, Trunck LA, Schweizer HP, Vivanco J (2008) Global gene expression profiles suggest an important role for nutrient acquisition in early pathogenesis in a plant model of Pseudomonas aeruginosa infection. Appl Environ Microbiol 74:5784–5791

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Youssefian Shohab (Akita Prefectural University, Akita, Japan) for critical reading of the manuscript, Dr. S. Tiwari (University of Missouri, Columbia, MO, USA) for providing us with the reporter construct; DR5::GUS. We are also grateful to Biotechnology Center of APU for experimental support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroetsu Wabiko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, S., Sato, R., Takahashi, M. et al. Ectopic localization of auxin and cytokinin in tobacco seedlings by the plant-oncogenic AK-6b gene of Agrobacterium tumefaciens AKE10. Planta 238, 753–770 (2013). https://doi.org/10.1007/s00425-013-1930-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-1930-0

Keywords

Navigation