Skip to main content
Log in

Expression of a chimaeric heat-shock-inducible Agrobacterium 6b oncogene in Nicotiana rustica

  • Research Article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The T-6b gene of Agrobacterium tumefaciens strain Tm4 induces tumours on Nicotiana rustica by an as yet unknown mechanism. These tumours cannot be regenerated into normal plants. To study the effect of the T-6b gene product on normal plant cells, the T-6b gene was placed under control of the Drosophila melanogaster hsp70 heat-shock promoter and introduced into N. rustica. Progeny of an hsp70-T-6b transformant developed into normal plants. The inducibility of the hsp70-T-6b construct was shown by northern analysis and by heat-shock-dependent growth alterations on the level of whole seedlings. Upon wounding at normal temperature conditions hsp70-T-6b plants formed small tumours on leaves and stems. Grafts between transformed plants and normal plants led to a wound callus which remained limited to transformed tissues, indicating that the T-6b gene product does not diffuse. Protoplasts of hsp70-T-6b plants divided in the same way as control protoplasts under standard culture conditions. However, when protoplast cultures were started in the absence of hormones, normal cells rapidly lost their sensitivity towards hormones, whereas hsp70-T-6b cells remained sensitive for a significantly longer period. Thus, the T-6b gene product alters hormone sensitivity during the initial phases of protoplast culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonnard G, Tinland B, Paulus F, Szegedi E, Otten L: Nucleotide sequence, evolutionary origin and biological role of a rearranged cytokinin gene isolated from a wide host range biotype III Agrobacterium strain. Mol Gen Genet 216: 428–438 (1989).

    Article  PubMed  Google Scholar 

  2. Dhaese P, DeGreve H, Decraemer H, Schell J, Van Montagu M: Rapid mapping of transposon insertion and deletion mutations in the large Ti-plasmids of Agrobacterium tumefaciens. Nucl Acids Res 7: 1837–1849 (1979).

    PubMed  Google Scholar 

  3. Garfinkel DJ, Simpson RB, Ream LW, White FF, Gordon MP, Nester EW: Genetic analysis of crown gall: fine structure map of the T-DNA by site-directed mutagenesis. Cell 27: 143–153 (1981).

    Article  PubMed  Google Scholar 

  4. Hall TC, Ma Y, Buchbinder BU, Pynes JW, Bliss FA: Messenger RNA from G1 protein of french bean seeds: cell-free translation and product characterization. Proc Natl Acad Sci USA 75: 3196–3200 (1978).

    Google Scholar 

  5. Heikkila JJ, Papp JET, Schultz GA, Bewley JD: Induction of heat shock protein messenger RNA in maize mesocotyls by water stress, abscisic acid, and wounding. Plant Physiol 76: 270–274 (1984).

    Google Scholar 

  6. Hooykaas PJJ, denDulk-Ras H, Schilperoort RA: The Agrobacterium tumefaciens T-DNA gene 6b is an onc gene. Plant Mol Biol 11: 791–794 (1988).

    Google Scholar 

  7. Huss B, Bonnard G, Otten L: Isolation and functional analysis of a set of auxin genes with low root-inducing activity from an Agrobacterium tumefaciens biotype III strain. Plant Mol Biol 12: 271–283 (1989).

    Google Scholar 

  8. Ingolia TD, Craig EA, McCarthy BJ: Sequences of three copies of the gene for the major drosophila heat shock induced protein and their flanking regions. Cell 21: 669–679 (1980).

    Article  PubMed  Google Scholar 

  9. Jefferson RA: Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol Biol Rep 5: 387–405 (1987).

    Google Scholar 

  10. Joos H, Inzé D, Caplan A, Sormann M, VanMontagu M: Schell J: Genetic analysis of T-DNA transcripts in nopaline crown galls. Cell 32: 1057–1067 (1983).

    Article  PubMed  Google Scholar 

  11. Kares C, Prinsen E, vanOnckelen H, Otten L: IAA synthesis and root induction with iaa genes under heat shock promoter control. Plant Mol Biol 15: 225–236 (1990).

    PubMed  Google Scholar 

  12. Kao KN, Constabel NF, Michayluk MR, Gamborg OL: Plant protoplast fusion and growth of intergeneric hybrids. Planta 120: 215–227 (1974).

    Google Scholar 

  13. Leemans J, Shaw C, Deblaere RJ, DeGreve H, Hernalsteens JP, Maes M, VanMontagu M, Schell J: Site-specific mutagenesis of Agrobacterium Ti plasmids and transfer of genes to plant cells. Plasmid 6: 249–253 (1981).

    PubMed  Google Scholar 

  14. Leemans J, Hernalsteens JP, Deblaere R, DeGreve H, Thia-Toong L, VanMontagu M, Schell J: Genetic analysis of T-DNA and regeneration of transformed plants. In: Pühler A (ed) Molecular Genetics of the Bacteria-Plant Interaction, pp. 322–330. Springer-Verlag Berlin (1983).

    Google Scholar 

  15. Lenee P, Chupeau Y: Isolation and culture of sunflower protoplasts (Helianthus annuus L.): factors influencing the viability of cell colonies derived from protoplasts. Plant Sci 43: 69–75 (1986).

    Article  Google Scholar 

  16. Linsmaier EM, Skoog F: Organic growth requirements of tobacco tissue cultures. Physiol Plant 18: 100–127 (1965).

    Google Scholar 

  17. Medford JI, Horgan R, El-Zawi Z, Klee HJ: Alterations of endogenous cytokinins in transgenic plants using a chimeric isopentenyl transferase gene. Plant Cell 1: 403–413 (1989).

    Article  PubMed  Google Scholar 

  18. Morris RO: Genes specifying auxin and cytokinin biosynthesis in phytopathogens. Annu Rev Plant Physiol 37: 509–538 (1986).

    Google Scholar 

  19. Pinck M, Dore JM, Guilley H, Durr A, Pinck L, Hirth L, Fleck J: A simple gene expression system for the small subunit of ribulose bisophosphate carboxylase in leaves of Nicotiana sylvestris. Plant Mol Biol 7: 301–309 (1986).

    Google Scholar 

  20. Power JB, Cocking EC: Isolation of leaf protoplasts: macromolecule uptake and growth substance response. J Exp Bot 21: 64–70 (1970).

    Google Scholar 

  21. Rao RN, Rogers SG: Plasmid pKC7: a vector containing ten restriction endonuclease sites suitable for cloning DNA segments. Gene 7: 79–82 (1979).

    Article  PubMed  Google Scholar 

  22. Ream LW, Gordon MP, Nester EW: Multiple mutations in the T region of the Agrobacterium tumefaciens tumor-inducing plasmid. Proc Natl Acad Sci USA 80: 1660–1664 (1983).

    PubMed  Google Scholar 

  23. Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989).

    Google Scholar 

  24. Schmülling T, Beinsberger S, DeGreef J, Schell J, van Onckelen H, Spena A. Construction of a heat-inducible chimaeric gene to increase the cytokinin content in transgenic plant tissue. FEBS Lett 249: 401–406 (1989).

    Article  Google Scholar 

  25. Spanier K, Schell J, Schreier P: A functional analysis of T-DNA gene 6b: The fine tuning of cytokinin effects on shoot development. Mol Gen Genet 219: 209–216 (1989).

    PubMed  Google Scholar 

  26. Spena A, Hain R, Ziervogel U, Saedler H, Schell J: Construction of a heat-inducible gene for plants. Demonstration of heat-inducible activity of the Drosophila hsp70 promoter in plants. EMBO J 4: 2739–2743 (1985).

    Google Scholar 

  27. Tinland B, Huss B, Paulus F, Bonnard G, Otten L: Agrobacterium tumefaciens 6b genes are strain-specific and affect the activity of auxin as well as cytokinin genes. Mol Gen Genet 219: 217–224 (1989).

    Google Scholar 

  28. Tinland B, Rohfritsch O, Michler P, Otten L: Agrobacterium tumefaciens T-DNA gene 6b stimulates rol-induced root formation, permits growth at high auxin concentrations and increases root size. Mol Gen Genet 223: 1–10 (1990).

    Article  PubMed  Google Scholar 

  29. Töpfer R, Schell J, Steinbiss HH: Versatile cloning vectors for transient gene expression and direct gene transfer in plant cells. Nucl Acids Res 16: 8725 (1988).

    PubMed  Google Scholar 

  30. VanHaute E, Joos H, Maes M, Warren G, VanMontagu M, Schell J, Intergenic transfer and exchange recombination of restriction fragments cloned in pBR322: a novel strategy for the reversed genetics of the Ti plasmids of Agrobacterium tumefaciens. EMBO J 2: 411–417 (1983).

    PubMed  Google Scholar 

  31. Velten J, Schell J: Selection-expression plasmid vectors for use in genetic transformation of higher plants. Nucl Acids Res 13: 6981–6998 (1985).

    PubMed  Google Scholar 

  32. Willmitzer L, Dhaese P, Schreier P, Schmalenbach W, VanMontagu M, Schell J: Size, location and polarity of T-DNA-encoded transcripts in nopaline crown gall tumors; common transcripts in octopine and nopaline tumors. Cell 32: 1045–1056 (1983).

    Article  PubMed  Google Scholar 

  33. Zambryski P, Tempé J, Schell J: Transfer and function of T-DNA genes from Agrobacterium Ti and Ri plasmids in plants. Cell 56: 193–201 (1989).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tinland, B., Fournier, P., Heckel, T. et al. Expression of a chimaeric heat-shock-inducible Agrobacterium 6b oncogene in Nicotiana rustica . Plant Mol Biol 18, 921–930 (1992). https://doi.org/10.1007/BF00019206

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00019206

Key words

Navigation