Skip to main content
Log in

Optimizing expression of transgenes with an emphasis on post-transcriptional events

  • Special Topic
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Introducing a foreign gene into a new plant host does not always result in a high level of expression of the incoming gene. Numerous promoters have been used to express foreign genes in different plant tissues, but there are sometime various features of the new gene which are deleterious to expression in the new host. There are a number of posttranscriptional steps in the expression of a gene and sometimes sequences present in a particular coding region can resemble the signals which initiate these processing steps. When aberrantly carried out, these steps diminish the level of expression. By removing such fortuitous signals, one can dramatically increase expression of a transgene in plants. Ensuring proper protein folding and/or targeting the protein product to a particular cellular compartment can also be used to increase the level of protein obtained. The various methods used to optimize expression of a foreign gene in plants by concentrating on post-transcriptional events are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adang MJ, Brody MS, Cardineau G, Eagan N, Roush RT, Shewmaker CK, Jones A, Oakes JV, McBride KE: The reconstruction and expression of a Bacillus thuringiensis cryIIIA gene in protoplasts and potato plants. Plant Mol Biol 21: 1131–1145 (1993).

    Google Scholar 

  2. Barton KA, Whiteley HR, Yang N: Bacillus thuringiensis delta-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol 85: 1103–1109 (1987).

    Google Scholar 

  3. Barton KA, Miller MJ: Production of Bacillus thuringiensis insecticidal proteins in plants. In: Kung SD, Wu R (eds) Transgenic Plants, vol 1: Engineering and Utilization, pp. 297–315. Academic Press, New York (1993).

    Google Scholar 

  4. Battraw M, Hall TC: Expression of a chimeric neomycin phosphotransferase II gene in first and second generation transgenic rice plants. Plant Sci 86: 191–202 (1992).

    Google Scholar 

  5. Borenstein P, McKay J, Morishima Jk, Devarayalu S, Gelinas RE: Regulatory elements in the first intron contribute to transcriptional control of the human al (I) collagen gene. Proc Natl Acad Sci USA 84: 8869–8873 (1987).

    Google Scholar 

  6. Boronat A, Martinez MC, Reina M, Puigdomenech P, Palau J: Isolation and sequencing of a 28 kd glutelin-2 gene from maize: Common elements in the 5′ flanking regions among zein and glutelin genes. Plant Sci 47: 95–102 (1986).

    Google Scholar 

  7. Callis J, Fromm M, Walbot V: Introns increase gene expression in cultured maize cells. Genes Devel 1: 1183–1200 (1987).

    Google Scholar 

  8. Cao J, Duan X, McElroy D, Wu R: Regeneration of herbicide resistant rice plants following microprojectile-mediated transformation of suspension culture cells. Plant Cell Rep 11: 586–591 (1992).

    Google Scholar 

  9. Carozzi NB, Warren GW, Desai N, Jayne SM, Lotstein R, Rice DA, Evola S, Koziel MG: Expression of a chimeric CaMV 35S Bacillus thuringiensis insecticidal protein gene in transgenic tobacco. Plant Mol Biol 20: 539–548 (1992).

    Google Scholar 

  10. Cheng J, Bolyard MG, Saxena RC, Sticklen MB: Production of insect resistant potato by genetic transformation with a deltaendotoxin gene from Bacillus thuringiensis var. kurstaki. Plant Sci 81: 83–91 (1992).

    Google Scholar 

  11. Christensen AH, Sharrock RA, Quail PH: Maize polyubiquitin genes: Structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18: 675–689 (1992).

    Google Scholar 

  12. Christou P, Ford T, Kofron M: Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/technology 9: 957–962 (1991).

    Google Scholar 

  13. Dennis ES, Gerlach WL, Pryor AJ, Bennetzen JL, Inglis A, Llewellyn D, Sachs MM, Ferl RJ, Peackocock WJ: Molecular analysis of the alcohol dehydrogenase (Adh1) gene of maize. Nucl Acids Res 12: 3983–4000 (1984).

    Google Scholar 

  14. Ebora RV, Ebora MM, Sticklen MB: Transgenic potato expressing the Bacillus thuringiensis crylA(c) gene: effects on the survival and food consumption of Phthorimea operculella (Lepidoptera: Gelechiidae) and Ostrinia nubilalis (Lepidoptera: Noctuidae). J Econ Entomol 87: 1122–1127 (1994).

    Google Scholar 

  15. Fischhoff DA, Bowdish KS, Perlak FJ, Marrone PG, McCormick SM, Niedermeyer JG, Dean DA, Kusano-Kretzmer K, Mayer EJ, Rochester DE, Rogers SG, Fraley RT: Insect tolerant transgenic tomato plants. Bio/technology 5: 807–813 (1987).

    Google Scholar 

  16. Florack D, Dirkse WG, Visser B, Heidekamp F, Stiekema W: Expression of biologically active hordothionins in tobacco. Effects of pre- and pro-sequences at the amino and carboxyl termini of the hordothionin precursor on the mature protein expression and sorting. Plant Mol Biol 24: 83–96 (1994).

    Google Scholar 

  17. Florack D, Allefs S, Bollen R, Bosch D, Visser B, Stiekema W: Expression of giant silkmoth cecropin B genes in tobacco. Transgenic Res 4: 132–141 (1995).

    Google Scholar 

  18. French R, Janda M, Ahlquist P: Bacterial gene inserted in an engineered RNA virus: efficient expression in monocotyledonous plant cells. Science 231: 1294–1297 (1986).

    Google Scholar 

  19. Fromm ME, Morrish F, Armstrong C, Williams R, Thomas J, Klein TM: Inheritance and expression of chimeric genes in the progeny of transgenic plants. Bio/technology 8: 833–844 (1990).

    Google Scholar 

  20. Fujimoto H, Itoh K, Yamamoto M, Kyozuka J, Shimamoto K: Insect resistant rice generated by introduction of a modified delta-endotoxin gene of Bacillus thuringiensis. Bio/technology 11: 1151–1155 (1993).

    Google Scholar 

  21. Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TMA: The 5′-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucl Acids Res 15: 3257–3273 (1987).

    Google Scholar 

  22. Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TMA: A comparison of eukaryotic viral 5′-leader sequences as enhancers of mRNA expression in vivo. Nucl Acids Res 15: 8693–8711 (1987).

    Google Scholar 

  23. Gallie DR, Sleat DE, Turner PC, Wilson TMA: Mutational analysis of the tobacco mosaic virus 5′-leader for altered ability to enhance translation. Nucl Acids Res 16: 883–893 (1988).

    Google Scholar 

  24. Gallie DR, Lucas WJ, Walbot V: Visualizing mRNA expression in plant protoplasts: factors influencing efficient mRNA uptake and translation. Plant Cell 1: 301–311 (1989).

    Google Scholar 

  25. Gallie DR, Feder JN, Schimke RT, Walbot V: Posttranscriptional regulation in higher eukaryotes: the role of the reporter gene in controlling expression. Mol Gen Genet 228: 258–264 (1991).

    Google Scholar 

  26. Gallie DR, Young TE: The regulation of expression in transformed maize aleurone and endosperm protoplasts. Plant Physiol 106: 929–939 (1994).

    Google Scholar 

  27. Gehrke L, Auron PE, Quigley GQ, Rich A, Sonenberg N: 5′-Conformation of capped alfalfa mosaic virus ribonucleic acid 4 may reflect its independence of the cap structure or of cap-binding protein for efficient translation. Biochemistry 22: 5157–5164 (1983).

    Google Scholar 

  28. Geiser M, Schweitzer S, Grimm C: The hypervariable region in the genes coding for entomopathogenic crystal proteins of Bacillus thuringiensis: nucleotide sequence of the kurhdl gene of subsp. kurstaki HD1. Gene 48: 109–118 (1986).

    Google Scholar 

  29. Genschick P, Marbach M, Uze M, Feuerman B, Plesse B, Fleck J: Structure and promoter activity of a stress and developmentally regulated polyubiquitin-encoding gene of Nicotiana tabacum. Gene 148: 195–202 (1994).

    Google Scholar 

  30. Goelet P, Lomonossoff GP, Butler PJG, Akam ME, Gait MJ, Karn J: Nucleotide sequence of tobacco mosaic virus RNA. Proc Natl Acad Sci USA 79: 5818–5822 (1982).

    Google Scholar 

  31. Goodall GJ, Filipowicz W: Different effects of intron nucleotide composition and secondary structure on pre-mRNA splicing in monocot and dicot plants. EMBO J 10: 2635–2644 (1991).

    Google Scholar 

  32. Gordon-Kamm WJ, Spencer M, Mangano ML, Adams TR, Daines RJ, Start WG, O'Brien JV, Chambers SA, Adams WR, Willetts NG, Rice TB, Mackey CJ, Krueger RW, Kausch AP, Lemaux PG. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2: 603–618 (1990).

    Google Scholar 

  33. Heidecker G, Messing J: Structural analysis of plant genes. Annu Rev Plant Physiol 37: 439–466 (1986).

    Google Scholar 

  34. Hightower R, Baden C, Penzes E, Dunsmuir P: The expression of cecropin peptide in transgenic tobacco does not confer resistance to Pseudomonas syringae pv. tabaci. Plant Cell Rep 13: 295–299 (1994).

    Google Scholar 

  35. Hudspeth RL, Grula JW: Structure and expression of the maize gene encoding the phosphoenolpyruvate carboxylase isozyme involved in C4 photosynthesis. Plant Mol Biol 12: 579–589 (1989).

    Google Scholar 

  36. Ingelbrecht LW, Herman LMF, Dekeyser RA, Van Montagu MC, Depicker AG: Different 3′ end regions strongly influence the level of gene expression in plant cells. Plant Cell 1: 671–680 (1989).

    Google Scholar 

  37. Jefferson RA, Kavanaugh TA, Bevan MW: GUS Fusions: β-glucuronodase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907 (1987).

    Google Scholar 

  38. Jobling SA, Gehrke L: Enhanced translation of chimaeric messenger RNAs containing a plant viral untranslated leader sequence. Nature 325: 622–625 (1987).

    Google Scholar 

  39. Jones JDG, Dean C, Gidoni, Gilbert D, Bond-Nutter D, Lee R, Bedbrook J, Dunsmuir P: Expression of bacterial chitinase protein in tobacco leaves using two photosynthetic gene promoters. Mol Gen Genet 212: 536–542 (1988).

    Google Scholar 

  40. Joshi CP: An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucl Acids Res 15: 6643–6653 (1987).

    Google Scholar 

  41. Klein TM, Roth BA, Fromm ME: Regulation of anthocyanin biosynthetic genes introduced into intact maize tissues by microprojectiles. Proc Natl Acad Sci USA 86: 6681–6685 (1989).

    Google Scholar 

  42. Kozak M: Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44: 283–292 (1986).

    Google Scholar 

  43. Kozak M: An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucl Acids Res 15: 8125–8132 (1987).

    Google Scholar 

  44. Koziel MG, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell S, Launis K, Lewis K, Maddox D, McPherson K, Meghji MR, Merlin E, Rhodes R, Warren GW, Wright M, Evola SV: Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/technology 11: 194–200 (1993).

    Google Scholar 

  45. Luehrsen KR, Walbot V: Intron enhancement of gene expression and the splicing efficiency of introns in maize cells. Mol Gen Genet 225: 81–93 (1991).

    Google Scholar 

  46. Luehrsen KR, Walbot V: The impact of AUG start codon context on maize gene expression in vivo. Plant Cell Rep 13: 454–458 (1994).

    Google Scholar 

  47. Lutcke HA, Chow KC, Mickel FS, Moss KA, Kern HF, Scheele GA: Selection of AUG initiation codons differs in plants and animals. EMBO J 6: 43–48 (1987).

    Google Scholar 

  48. Maas C, Laufs J, Grant S, Korfhage C, Werr W: The combination of a novel stimulatory element in the first exon of the maize shrunke-1 gene with the following intron enhances reporter gene expression 1000-fold. Plant Mol Biol 16: 199–207 (1991).

    Google Scholar 

  49. Mascerenhas D, Mettler IJ, Pierce DA, Lowe HW: Intron mediated enhancement of heterologous gene expression in maize. Plant Mol Biol 15: 913–920 (1990).

    Google Scholar 

  50. McBride KE, Svab Z, Schaaf DJ, Hogan PS, Stalker DM, Maliga P: Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Bio/technology 13: 362–365 (1995).

    Google Scholar 

  51. McElroy D, Zhang W, Wu R: Isolation of an efficient promoter for use in rice transformation. Plant Cell 2: 163–171 (1990).

    Google Scholar 

  52. Murray EE, Lotzer J, Eberle M: Codon usage in plants. Nucl Acids Res 17: 477–498 (1989).

    Google Scholar 

  53. Murray EE, Rocheleau T, Eberle M, Stock C, Sekar V, Adang M: Analysis of unstable RNA transcripts of insecticidal crystal protein genes of Bacitlus thuringiensis in transgenic plants and electroporated protoplasts. Plant Mol Biol 16: 1035–1050 (1991).

    Google Scholar 

  54. Nawrath C, Poirier Y, Somerville C: Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation. Proc Natl Acad Sci USA 91: 12760–12764 (1994).

    Google Scholar 

  55. Norris SR, Meyer SE, Callis J: The intron of Arabidopsis thaliana polyubiquitin genes is conserved in location and is a quantitative determinant of chimeric gene expression. Plant Mol Biol 21: 895–906 (1993).

    Google Scholar 

  56. Oard JH, Paige D, Dvorak J: Chimeric gene expression using maize intron in cultured cells of breadwheat. Plant Cell Rep 8: 156–160 (1989).

    Google Scholar 

  57. Pang SZ, Oberhaus SM, Rasmussen JL, Knipple DC, Bloomquist JR, Dean DH, Bowman KD, Sanford JC: Expression of a gene encoding a scorpion insectotoxin in yeast, bacteria, and plants. Gene 116: 165–172 (1992).

    Google Scholar 

  58. Perlak FJ, McPherson SA, Fuchs RL, Macintosh SC, Dean DA, Fischhoff DA: Expression of Bacillus thuringiensis protein in transgenic plants. In: Roberts DW, Granados RR (eds) Proceedings of a Conference on Biotechnology, Biological Pestcides and Novel Plant-Pest Resistance for Insect Pest Management, pp. 77–81. Boyce Thompson Institute for Plant Research, Ithaca, NY (1988).

    Google Scholar 

  59. Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplate JT, Fischhoff DA: Insect resistant cotton plants. Bio/technology 8: 939–943 (1990).

    Google Scholar 

  60. Perlak FJ, Fuchs RL, Dean DA, McPherson SL, Fischhoff DA: Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci USA 88: 3324–3328 (1991).

    Google Scholar 

  61. Perlak FJ, Stone TB, Muskopf YM, Peterson LJ, Parker GB, McPherson SA, Wyman J, Love S, Reed G, Biever D, Fischhoff DA: Genetically improved potatoes: protection from damage by Colorado potato beetles. Plant Mol Biol 22: 313–321 (1993).

    Google Scholar 

  62. Poirier Y, Dennis DE, Klomparens K, Sommerville CR: Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants. Science 256: 520–523 (1992).

    Google Scholar 

  63. Poirier Y, Dennis DE, Nawrath C, Somerville CR: Progress toward biologically produced biodegradable thermoplastics. Adv Mat 5: 30–37 (1993).

    Google Scholar 

  64. Poirier Y, Schechtman LA, Satkowski MM, Noda I, Somerville CR: Synthesis of high-molecular-weight poly([R]-(-)-3-hydroxybutyrate) in transgenic Arabidopsis thaliana plant cells. Int J Biol Macromol 17: 7–12 (1995).

    Google Scholar 

  65. Poogin MM, Skryabin KG: The 5′ untranslated leader sequence of potato virus X RNA enhances the expression of the heterologous gene in vivo. Mol Gen Genet 234: 329–331 (1992).

    Google Scholar 

  66. Rhodes CA, Pierce DA, Mettler IJ, Mascarenhas D, Detmer JJ: Genetically transformed maize plants from protoplasts. Science 240: 204–207 (1988).

    Google Scholar 

  67. Rothstein SJ, Lahners KN, Lotstein RJ, Carozzi NB, Jayne SM, Rice DA: Promoter cassettes, antibiotic-resistance genes, and vectors for plant transformation. Gene 53: 153–161 (1987).

    Google Scholar 

  68. Shimamoto K, Terada R, Izawa T, Fujimoto H: Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 338: 274–276 (1986).

    Google Scholar 

  69. Sleat DE, Gallie DR, Jefferson RA, Bevan MW, Turner PC, Wilson TMA. Characterization of the 5′-leader sequence of tobacco mosaic virus RNA as a general enhancer of translation in vitro. Gene 217: 217–225 (1987).

    Google Scholar 

  70. Sleat DE, Hull R, Turner PC, Wilson TMA: Studies on the mechaism of translational enhancement by the 5′-leader sequence of tobacco moasaic virus RNA. Eur J Biochem 175: 75–86 (1988).

    Google Scholar 

  71. Tanaka A, Mita S, Ohta S, Kyozuka J, Shimamoto K, Nakamura K: Enhancement of foreign gene expression by a dicot intron in rice but not in tobacco is correlated with an increased level of mRNA and an efficient splicing of the intron. Nucl Acids Res 18: 6767–6770 (1990).

    Google Scholar 

  72. Toki S, Takamatsu S, Nojiri C, Ooba S, Anzai H, Iwata M, Christensen AH, Quail PH, Uchimiya H: Expression of a maize ubiquitin gene promoter-bar chimeric gene in transgenic rice plants. Plant Physiol 100: 1503–1507 (1992).

    Google Scholar 

  73. Vaeck M, Reynaerts A, Hofte H, Jansens S, De Beuckeleer M, Dean C, Zabeau M, Van Montagu M, Leemans J: Transgenic plants protected from insect attack. Nature 328: 33–37 (1987).

    Google Scholar 

  74. Vaeck M, Reynaerts A, Hofte H: Protein engineering in plants: expression of Bacillus thuringiensis insecticidal protein genes. In: Schell J, Vasil IK (eds) Cell Culture and Somatic Cell Genetics of Plants, vol 6. Academic Press, Troy, MO (1989).

    Google Scholar 

  75. Vasil V, Clancy M, Ferl RJ, Vasil IK, Hannah LC: Increased gene expression by the first intron of maize shrunken-1 locus in grass species. Plant Physiol 91: 1575–1579 (1989).

    Google Scholar 

  76. Vasil V, Castillo AM, Fromm ME, Vasil IK: Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/technology 10: 667–674 (1992).

    Google Scholar 

  77. Weeks JT, Anderson OD, Blechl A: Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol 102: 1077–1084 (1992).

    Google Scholar 

  78. Wilson FD, Flint HM, Deaton WR, Fischhoff DA, Perlak FJ, Armstrong TA, Fuchs RL, Berberich SA, Parks NJ, Stapp BR: Resistance of cotton lines containing a Bacillus thuringiensis toxin to pink bollworm (Lepidopteran: Gelechiidae) and other insects. J Econ Entomol 4: 1516–1521 (1992).

    Google Scholar 

  79. Wong EY, Hironaka CM, Fischoff DA: Arabidopsis thaliana small subunit leader and transit peptide enhance the expression of Bacillus thuringiensis proteins in transgenic plants. Plant Mol Biol 20: 81–93 (1992).

    Google Scholar 

  80. Zhang W, McElroy D, Wu R: Analysis of rice actl 5′ region activity in transgenic rice plants. Plant Cell 3: 1155–1165 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koziel, M.G., Carozzi, N.B. & Desai, N. Optimizing expression of transgenes with an emphasis on post-transcriptional events. Plant Mol Biol 32, 393–405 (1996). https://doi.org/10.1007/BF00039392

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00039392

Key words

Navigation