Skip to main content

Advertisement

Log in

Channelopathies linked to plasma membrane phosphoinositides

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The plasma membrane phosphoinositide phosphatidylinositol 4,5-bisphosphate (PIP2) controls the activity of most ion channels tested thus far through direct electrostatic interactions. Mutations in channel proteins that change their apparent affinity to PIP2 can lead to channelopathies. Given the fundamental role that membrane phosphoinositides play in regulating channel activity, it is surprising that only a small number of channelopathies have been linked to phosphoinositides. This review proposes that for channels whose activity is PIP2-dependent and for which mutations can lead to channelopathies, the possibility that the mutations alter channel-PIP2 interactions ought to be tested. Similarly, diseases that are linked to disorders of the phosphoinositide pathway result in altered PIP2 levels. In such cases, it is proposed that the possibility for a concomitant dysregulation of channel activity also ought to be tested. The ever-growing list of ion channels whose activity depends on interactions with PIP2 promises to provide a mechanism by which defects on either the channel protein or the phosphoinositide levels can lead to disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharonovitz O, Zaun HC, Balla T, York JD, Orlowski J, Grinstein S (2000) Intracellular pH regulation by Na+/H+ exchange requires phosphatidylinositol 4, 5-bisphosphate. J Cell Biol 150:213–224

    Article  PubMed  CAS  Google Scholar 

  2. Akopian AN, Ruparel NB, Jeske NA, Hargreaves KM (2007) Transient receptor potential TRPA1 channel desensitization in sensory neurons is agonist dependent and regulated by TRPV1-directed internalization. J Physiol 583:175–193

    Article  PubMed  CAS  Google Scholar 

  3. Albert AP, Saleh SN, Large WA (2008) Inhibition of native TRPC6 channel activity by phosphatidylinositol 4, 5-bisphosphate in mesenteric artery myocytes. J Physiol 586:3087–3095

    Article  PubMed  CAS  Google Scholar 

  4. Arendt KL, Royo M, Fernandez-Monreal M, Knafo S, Petrok CN, Martens JR, Esteban JA (2010) PIP3 controls synaptic function by maintaining AMPA receptor clustering at the postsynaptic membrane. Nat Neurosci 13:36–44

    Article  PubMed  CAS  Google Scholar 

  5. Asteggiano C, Berberian G, Beauge L (2001) Phosphatidyl inositol-4, 5-bisphosphate bound to bovine cardiac Na+/Ca2+ exchanger displays a MgATP regulation similar to that of the exchange fluxes. Eur J Biochem 268:437–442

    Article  PubMed  CAS  Google Scholar 

  6. Basso AM, Bratcher NA, Harris RR, Jarvis MF, Decker MW, Rueter LE (2009) Behavioral profile of P2X7 receptor knockout mice in animal models of depression and anxiety: Relevance for neuropsychiatric disorders. Behav Brain Res 198:83–90

    Article  PubMed  CAS  Google Scholar 

  7. Baukrowitz T, Schulte U, Oliver D, Herlitze S, Krauter T, Tucker SJ, Ruppersberg JP, Fakler B (1998) PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science 282:1141–1144

    Article  PubMed  CAS  Google Scholar 

  8. Berman DE, Dall'Armi C, Voronov SV, McIntire LB, Zhang H, Moore AZ, Staniszewski A, Arancio O, Kim TW, Di Paolo G (2008) Oligomeric amyloid-beta peptide disrupts phosphatidylinositol-4, 5-bisphosphate metabolism. Nat Neurosci 11:547–554

    Article  PubMed  CAS  Google Scholar 

  9. Bernier L, Ase AR, Chevallier S, Blais D, Zhao Q, Boue-Grabot E, Logothetis D, Seguela P (2008) Phosphoinositides regulate P2X4 ATP-gated channels through direct interactions. J Neurosci 28:12938–12945

    Article  PubMed  CAS  Google Scholar 

  10. Bernier L, Ase AR, Tong X, Hamel E, Blais D, Zhao Q, Logothetis DE, Séguéla P (2008) Direct modulation of P2X1 receptor-channels by the lipid phosphatidylinositol 4, 5-bisphosphate. Mol Pharmacol 74:785–792

    Article  PubMed  CAS  Google Scholar 

  11. Bhalla V, Hallows KR (2008) Mechanisms of ENaC regulation and clinical implications. J Am Soc Nephrol 19:1845–1854

    Article  PubMed  CAS  Google Scholar 

  12. Bian J, Cui J, McDonald TV (2001) HERG K + channel activity is regulated by changes in phosphatidyl inositol 4, 5-bisphosphate. Circ Res 89:1168–1176

    Article  PubMed  CAS  Google Scholar 

  13. Bian JS, Kagan A, McDonald TV (2004) Molecular analysis of PIP2 regulation of HERG and IKr. Am J Physiol Heart Circ Physiol 287:H2154–H2163

    Article  PubMed  CAS  Google Scholar 

  14. Bian JS, McDonald TV (2007) Phosphatidylinositol 4, 5-bisphosphate interactions with the HERG K(+) channel. Pflugers Arch 455:105–113

    Article  PubMed  CAS  Google Scholar 

  15. Biel M, Michalakis S (2007) Function and dysfunction of CNG channels: insights from channelopathies and mouse models. Mol Neurobiol 35:266–277

    Article  PubMed  CAS  Google Scholar 

  16. Biel M, Wahl-Schott C, Michalakis S, Zong X (2009) Hyperpolarization-activated cation channels: from genes to function. Physiol Rev 89:847–885

    Article  PubMed  CAS  Google Scholar 

  17. Bielas SL, Silhavy JL, Brancati F, Kisseleva MV, Al-Gazali L, Sztriha L, Bayoumi RA, Zaki MS, Abdel-Aleem A, Rosti RO, Kayserili H, Swistun D, Scott LC, Bertini E, Boltshauser E, Fazzi E, Travaglini L, Field SJ, Gayral S, Jacoby M, Schurmans S, Dallapiccola B, Majerus PW, Valente EM, Gleeson JG (2009) Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nat Genet 41:1032–1036

    Article  PubMed  CAS  Google Scholar 

  18. Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79:763–854

    PubMed  CAS  Google Scholar 

  19. Bowie D (2008) Ionotropic glutamate receptors & CNS disorders. CNS Neurol Disord Drug Targets 7:129–143

    Article  PubMed  CAS  Google Scholar 

  20. Brady JD, Rich ED, Martens JR, Karpen JW, Varnum MD, Brown RL (2006) Interplay between PIP3 and calmodulin regulation of olfactory cyclic nucleotide-gated channels. Proc Natl Acad Sci USA 103:15635–15640

    Article  PubMed  CAS  Google Scholar 

  21. Brauchi S, Orta G, Mascayano C, Salazar M, Raddatz N, Urbina H, Rosenmann E, Gonzalez-Nilo F, Latorre R (2007) Dissection of the components for PIP2 activation and thermosensation in TRP channels. Proc Natl Acad Sci USA 104:10246–10251

    Article  PubMed  CAS  Google Scholar 

  22. Bright SR, Rich ED, Varnum MD (2007) Regulation of human cone cyclic nucleotide-gated channels by endogenous phospholipids and exogenously applied phosphatidylinositol 3, 4, 5-trisphosphate. Mol Pharmacol 71:176–183

    Article  PubMed  CAS  Google Scholar 

  23. Brini M (2004) Ryanodine receptor defects in muscle genetic diseases. Biochem Biophys Res Commun 322:1245–1255

    Article  PubMed  CAS  Google Scholar 

  24. Brown DA, Passmore GM (2009) Neural KCNQ (Kv7) channels. Br J Pharmacol 156:1185–1195

    Article  PubMed  CAS  Google Scholar 

  25. Burke MA, Mutharasan RK, Ardehali H (2008) The sulfonylurea receptor, an atypical ATP-binding cassette protein, and its regulation of the KATP channel. Circ Res 102:164–176

    Article  PubMed  CAS  Google Scholar 

  26. Carafoli E, Brini M (2000) Calcium pumps: structural basis for and mechanism of calcium transmembrane transport. Curr Opin Chem Biol 4:152–161

    Article  PubMed  CAS  Google Scholar 

  27. Chemin J, Girard C, Duprat F, Lesage F, Romey G, Lazdunski M (2003) Mechanisms underlying excitatory effects of group I metabotropic glutamate receptors via inhibition of 2P domain K + channels. EMBO J 22:5403–5411

    Article  PubMed  CAS  Google Scholar 

  28. Chemin J, Patel AJ, Duprat F, Lauritzen I, Lazdunski M, Honore E (2005) A phospholipid sensor controls mechanogating of the K + channel TREK-1. EMBO J 24:44–53

    Article  PubMed  CAS  Google Scholar 

  29. Chemin J, Patel AJ, Duprat F, Sachs F, Lazdunski M, Honore E (2007) Up- and down-regulation of the mechano-gated K(2P) channel TREK-1 by PIP (2) and other membrane phospholipids. Pflugers Arch 455:97–103

    Article  PubMed  CAS  Google Scholar 

  30. Cheng WWL, Enkvetchakul D, Nichols CG (2009) KirBac1.1: it's an inward rectifying potassium channel. J Gen Physiol 133:295–305

    Article  PubMed  CAS  Google Scholar 

  31. Chizh BA, Illes P (2001) P2X receptors and nociception. Pharmacol Rev 53:553–568

    PubMed  CAS  Google Scholar 

  32. Cho H, Youm JB, Ryu SY, Earm YE, Ho WK (2001) Inhibition of acetylcholine-activated K(+) currents by U73122 is mediated by the inhibition of PIP(2)-channel interaction. Br J Pharmacol 134:1066–1072

    Article  PubMed  CAS  Google Scholar 

  33. Choquette D, Hakim G, Filoteo AG, Plishker GA, Bostwick JR, Penniston JT (1984) Regulation of plasma membrane Ca2+ ATPases by lipids of the phosphatidylinositol cycle. Biochem Biophys Res Commun 125:908–915

    Article  PubMed  CAS  Google Scholar 

  34. Chourbaji S, Vogt MA, Fumagalli F, Sohr R, Frasca A, Brandwein C, Hortnagl H, Riva MA, Sprengel R, Gass P (2008) AMPA receptor subunit 1 (GluR-A) knockout mice model the glutamate hypothesis of depression. FASEB J 22:3129–3134

    Article  PubMed  CAS  Google Scholar 

  35. Christensen JK, Paternain AV, Selak S, Ahring PK, Lerma J (2004) A mosaic of functional kainate receptors in hippocampal interneurons. J Neurosci 24:8986–8993

    Article  PubMed  CAS  Google Scholar 

  36. Chuang HH, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV, Julius D (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4, 5)P2-mediated inhibition. Nature 411:957–962

    Article  PubMed  CAS  Google Scholar 

  37. Cohen S, Greenberg ME (2008) Communication between the synapse and the nucleus in neuronal development, plasticity, and disease. Annu Rev Cell Dev Biol 24:183–209

    Article  PubMed  CAS  Google Scholar 

  38. Conway SJ, Kruzynska-Frejtag A, Wang J, Rogers R, Kneer PL, Chen H, Creazzo T, Menick DR, Koushik SV (2002) Role of sodium-calcium exchanger (Ncx1) in embryonic heart development: a transgenic rescue? Ann NY Acad Sci 976:268–281

    Article  PubMed  CAS  Google Scholar 

  39. Cui J, Yang H, Lee US (2009) Molecular mechanisms of BK channel activation. Cell Mol Life Sci 66:852–875

    Article  PubMed  CAS  Google Scholar 

  40. Cukras CA, Jeliazkova I, Nichols CG (2002) Structural and functional determinants of conserved lipid interaction domains of inward rectifying Kir6.2 channels. J Gen Physiol 119:581–591

    Article  PubMed  CAS  Google Scholar 

  41. Czirjak G, Petheo GL, Spat A, Enyedi P (2001) Inhibition of TASK-1 potassium channel by phospholipase C. Am J Physiol Cell Physiol 281:C700–C708

    PubMed  CAS  Google Scholar 

  42. Dai Y, Wang S, Tominaga M, Yamamoto S, Fukuoka T, Higashi T, Kobayashi K, Obata K, Yamanaka H, Noguchi K (2007) Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest 117:1979–1987

    Article  PubMed  CAS  Google Scholar 

  43. Daniels RL, Takashima Y, McKemy DD (2009) Activity of the neuronal cold sensor TRPM8 is regulated by phospholipase C via the phospholipid phosphoinositol 4, 5-bisphosphate. J Biol Chem 284:1570–1582

    Article  PubMed  CAS  Google Scholar 

  44. Davies NP, Imbrici P, Fialho D, Herd C, Bilsland LG, Weber A, Mueller R, Hilton-Jones D, Ealing J, Boothman BR, Giunti P, Parsons LM, Thomas M, Manzur AY, Jurkat-Rott K, Lehmann-Horn F, Chinnery PF, Rose M, Kullmann DM, Hanna MG (2005) Andersen-Tawil syndrome: new potassium channel mutations and possible phenotypic variation. Neurology 65:1083–1089

    Article  PubMed  CAS  Google Scholar 

  45. Decher N, Gonzalez T, Streit A, Sachse F, Renigunta V, Soom M, Heinemann S, Daut J, Sanguinetti M (2008) Structural determinants of Kvbeta1.3-induced channel inactivation: a hairpin modulated by PIP2. EMBO J 27:3164–3174

    Article  PubMed  CAS  Google Scholar 

  46. Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61

    PubMed  CAS  Google Scholar 

  47. Donaldson MR, Jensen JL, Tristani-Firouzi M, Tawil R, Bendahhou S, Suarez WA, Cobo AM, Poza JJ, Behr E, Wagstaff J, Szepetowski P, Pereira S, Mozaffar T, Escolar DM, Fu YH, Ptacek LJ (2003) PIP2 binding residues of Kir2.1 are common targets of mutations causing Andersen syndrome. Neurology 60:1811–1816

    Article  PubMed  CAS  Google Scholar 

  48. Dong K, Tang L, MacGregor GG, Hebert SC (2002) Localization of the ATP/phosphatidylinositol 4, 5 diphosphate-binding site to a 39-amino acid region of the carboxyl terminus of the atp-regulated K+ channel Kir1.1. J Biol Chem 277:49366–49373

    Article  PubMed  CAS  Google Scholar 

  49. Doring F, Derst C, Wischmeyer E, Karschin C, Schneggenburger R, Daut J, Karschin A (1998) The epithelial inward rectifier channel Kir7.1 displays unusual K + permeation properties. J Neurosci 18:8625–8636

    PubMed  CAS  Google Scholar 

  50. Du X, Zhang H, Lopes C, Mirshahi T, Rohacs T, Logothetis DE (2004) Characteristic interactions with phosphatidylinositol 4, 5-bisphosphate determine regulation of Kir channels by diverse modulators. J Biol Chem 279:37271–37281

    Article  PubMed  CAS  Google Scholar 

  51. Duprat F, Lauritzen I, Patel A, Honore E (2007) The TASK background K2P channels: chemo- and nutrient sensors. Trends Neurosci 30:573–580

    Article  PubMed  CAS  Google Scholar 

  52. Enkvetchakul D, Nichols CG (2003) Gating mechanism of KATP channels: function fits form. J Gen Physiol 122:471–480

    Article  PubMed  CAS  Google Scholar 

  53. Fan Z, Makielski JC (1997) Anionic phospholipids activate ATP-sensitive potassium channels. J Biol Chem 272:5388–5395

    Article  PubMed  CAS  Google Scholar 

  54. Fan MMY, Raymond LA (2007) N-Methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington's disease. Prog Neurobiol 81:272–293

    Article  PubMed  CAS  Google Scholar 

  55. Ferguson KM, Lemmon MA, Schlessinger J, Sigler PB (1995) Structure of the high affinity complex of inositol trisphosphate with a phospholipase C pleckstrin homology domain. Cell 83:1037–1046

    Article  PubMed  CAS  Google Scholar 

  56. Filomatori CV, Rega AF (2003) On the mechanism of activation of the plasma membrane Ca2+-ATPase by ATP and acidic phospholipids. J Biol Chem 278:22265–22271

    Article  PubMed  CAS  Google Scholar 

  57. Ford CP, Stemkowski PL, Smith PA (2004) Possible role of phosphatidylinositol 4, 5, bisphosphate in luteinizing hormone releasing hormone-mediated M-current inhibition in bullfrog sympathetic neurons. Eur J NeuroSci 20:2990–2998

    Article  PubMed  Google Scholar 

  58. Foskett JK, White C, Cheung KH, Mak DO (2007) Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87:593–658

    Article  PubMed  CAS  Google Scholar 

  59. Fujiwara Y, Kubo Y (2006) Regulation of the desensitization and ion selectivity of ATP-gated P2X2 channels by phosphoinositides. J Physiol 576:135–149

    Article  PubMed  CAS  Google Scholar 

  60. Furukawa T, Yamane T, Terai T, Katayama Y, Hiraoka M (1996) Functional linkage of the cardiac ATP-sensitive K + channel to the actin cytoskeleton. Pflugers Arch 431:504–512

    Article  PubMed  CAS  Google Scholar 

  61. Gadsby DC, Vergani P, Csanady L (2006) The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature 440:477–483

    Article  PubMed  CAS  Google Scholar 

  62. Gamper N, Reznikov V, Yamada Y, Yang J, Shapiro MS (2004) Phosphotidylinositol 4, 5-bisphosphate signals underlie receptor-specific Gq/11-mediated modulation of N-type Ca2+ channels. J Neurosci 24:10980–10992

    Article  PubMed  CAS  Google Scholar 

  63. Gamper N, Shapiro MS (2007) Regulation of ion transport proteins by membrane phosphoinositides. Nat Rev Neurosci 8:921–934

    Article  PubMed  CAS  Google Scholar 

  64. Gazulla J, Tintore M (2007) P/Q-type voltage-dependent calcium channels in neurological disease. Neurologia 22:511–516

    PubMed  CAS  Google Scholar 

  65. Glouchankova L, Krishna UM, Potter BVL, Falck JR, Bezprozvanny I (2000) Association of the inositol (1, 4, 5)-trisphosphate receptor ligand binding site with phosphatidylinositol (4, 5)-bisphosphate and adenophostin A. Mol Cell Biol Res Commun 3:153–158

    Article  PubMed  CAS  Google Scholar 

  66. Gloyn AL, Siddiqui J, Ellard S (2006) Mutations in the genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum Mutat 27:220–231

    Article  PubMed  CAS  Google Scholar 

  67. Goldstein SAN, Bayliss DA, Kim D, Lesage F, Plant LD, Rajan S (2005) International union of pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels. Pharmacol Rev 57:527–540

    Article  PubMed  CAS  Google Scholar 

  68. Haider S, Tarasov AI, Craig TJ, Sansom MS, Ashcroft FM (2007) Identification of the PIP2-binding site on Kir6.2 by molecular modelling and functional analysis. EMBO J 26:3749–3759

    Article  PubMed  CAS  Google Scholar 

  69. Halstead JR, Jalink K, Divecha N (2005) An emerging role for PtdIns(4, 5)P2-mediated signalling in human disease. Trends Pharmacol Sci 26:654–660

    Article  PubMed  CAS  Google Scholar 

  70. Harmar AJ, Hills RA, Rosser EM, Jones M, Buneman OP, Dunbar DR, Greenhill SD, Hale VA, Sharman JL, Bonner TI, Catterall WA, Davenport AP, Delagrange P, Dollery CT, Foord SM, Gutman GA, Laudet V, Neubig RR, Ohlstein EH, Olsen RW, Peters J, Pin J, Ruffolo RR, Searls DB, Wright MW, Spedding M (2009) IUPHAR-DB: the IUPHAR database of G protein-coupled receptors and ion channels. Nucleic Acids Res 37:D680–D685

    Article  PubMed  CAS  Google Scholar 

  71. Haruna T, Yoshida H, Nakamura TY, Xie LH, Otani H, Ninomiya T, Takano M, Coetzee WA, Horie M (2002) α1-Adrenoceptor-mediated breakdown of phosphatidylinositol 4, 5-bisphosphate inhibits pinacidil-activated ATP-sensitive K+ currents in rat ventricular myocytes. Circ Res 91:232–239

    Article  PubMed  CAS  Google Scholar 

  72. Hashimoto K (2009) Emerging role of glutamate in the pathophysiology of major depressive disorder. Brain Res Rev 61:105–123

    Article  PubMed  CAS  Google Scholar 

  73. He Z, Feng S, Tong Q, Hilgemann DW, Philipson KD (2000) Interaction of PIP2 with the XIP region of the cardiac Na/Ca exchanger. Am J Physiol Cell Physiol 278:C661–C666

    PubMed  CAS  Google Scholar 

  74. Hernandez CC, Falkenburger B, Shapiro MS (2009) Affinity for phosphatidylinositol 4, 5-bisphosphate determines muscarinic agonist sensitivity of Kv7 K + channels. J Gen Physiol 134:437–448

    Article  PubMed  CAS  Google Scholar 

  75. Hernandez CC, Zaika O, Shapiro MS (2008) A carboxy-terminal inter-helix linker as the site of phosphatidylinositol 4, 5-bisphosphate action on Kv7 (M-type) K + channels. J Gen Physiol 132:361–381

    Article  PubMed  CAS  Google Scholar 

  76. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y (2010) Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 90:291–366

    Article  PubMed  CAS  Google Scholar 

  77. Hilgemann DW (1990) Regulation and deregulation of cardiac Na(+)-Ca2+ exchange in giant excised sarcolemmal membrane patches. Nature 344:242–245

    Article  PubMed  CAS  Google Scholar 

  78. Hilgemann DW, Ball R (1996) Regulation of cardiac Na+, Ca2+ exchange and KATP potassium channels by PIP2. Science 273:956–959

    Article  PubMed  CAS  Google Scholar 

  79. Himmel B, Nagel G (2004) Protein kinase-independent activation of CFTR by phosphatidylinositol phosphates. EMBO Rep 5:85–90

    Article  PubMed  CAS  Google Scholar 

  80. Hirdes W, Horowitz LF, Hille B (2004) Muscarinic modulation of erg potassium current. J Physiol 559:67–84

    Article  PubMed  CAS  Google Scholar 

  81. Hirono M, Denis CS, Richardson GP, Gillespie PG (2004) Hair cells require phosphatidylinositol 4, 5-bisphosphate for mechanical transduction and adaptation. Neuron 44:309–320

    Article  PubMed  CAS  Google Scholar 

  82. Ho IH, Murrell-Lagnado RD (1999) Molecular mechanism for sodium-dependent activation of G protein-gated K + channels. J Physiol 520(3):645–651

    Article  PubMed  CAS  Google Scholar 

  83. Huang CL (2007) Complex roles of PIP2 in the regulation of ion channels and transporters. Am J Physiol Renal Physiol 293:F1761–F1765

    Article  PubMed  CAS  Google Scholar 

  84. Huang CL, Feng S, Hilgemann DW (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma. Nature 391:803–806

    Article  PubMed  CAS  Google Scholar 

  85. Hummler E, Planes C (2010) Importance of ENaC-mediated sodium transport in alveolar fluid clearance using genetically-engineered mice. Cell Physiol Biochem 25:63–70

    Article  PubMed  CAS  Google Scholar 

  86. International Collaborative Study Group for Bartter-like Syndromes (1997) Mutations in the gene encoding the inwardly-rectifying renal potassium channel, ROMK, cause the antenatal variant of Bartter syndrome: evidence for genetic heterogeneity. Hum Mol Genet 6:17–26

    Article  Google Scholar 

  87. Jardin I, Redondo PC, Salido GM, Rosado JA (2008) Phosphatidylinositol 4, 5-bisphosphate enhances store-operated calcium entry through hTRPC6 channel in human platelets. Biochim Biophys Acta 1783:84–97

    Article  PubMed  CAS  Google Scholar 

  88. Jen JC, Graves TD, Hess EJ, Hanna MG, Griggs RC, Baloh RW, CINCH investigators (2007) Primary episodic ataxias: diagnosis, pathogenesis and treatment. Brain 130:2484–2493

    Article  PubMed  CAS  Google Scholar 

  89. Kavran JM, Klein DE, Lee A, Falasca M, Isakoff SJ, Skolnik EY, Lemmon MA (1998) Specificity and promiscuity in phosphoinositide binding by pleckstrin homology domains. J Biol Chem 273:30497–30508

    Article  PubMed  CAS  Google Scholar 

  90. Kawate T, Michel JC, Birdsong WT, Gouaux E (2009) Crystal structure of the ATP-gated P2X(4) ion channel in the closed state. Nature 460:592–598

    Article  PubMed  CAS  Google Scholar 

  91. Kaznacheyeva E, Zubov A, Nikolaev A, Alexeenko V, Bezprozvanny I, Mozhayeva GN (2000) Plasma membrane calcium channels in human carcinoma A431 cells are functionally coupled to inositol 1, 4, 5-trisphosphate receptor-phosphatidylinositol 4, 5-bisphosphate complexes. J Biol Chem 275:4561–4564

    Article  PubMed  CAS  Google Scholar 

  92. Kellenberger S, Schild L (2002) Epithelial sodium channel/Degenerin family of ion channels: A variety of functions for a shared structure. Physiol Rev 82:735–767

    PubMed  CAS  Google Scholar 

  93. Khakh BS, Burnstock G, Kennedy C, King BF, North RA, Séguéla P, Voigt M, Humphrey PPA (2001) International Union of Pharmacology. XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits. Pharmacol Rev 53:107–118

    PubMed  CAS  Google Scholar 

  94. Khakh BS, North RA (2006) P2X receptors as cell-surface ATP sensors in health and disease. Nature 442:527–532

    Article  PubMed  CAS  Google Scholar 

  95. Kim D, Cavanaugh EJ, Simkin D (2008) Inhibition of transient receptor potential A1 channel by phosphatidylinositol-4, 5-bisphosphate. Am J Physiol Cell Physiol 295:C92–C99

    Article  PubMed  CAS  Google Scholar 

  96. Kim C, Jeon D, Kim YH, Lee CJ, Kim H, Shin HS (2009) Deletion of N-type Ca(2+) channel Ca(v)2.2 results in hyperaggressive behaviors in mice. J Biol Chem 284:2738–2745

    Article  PubMed  CAS  Google Scholar 

  97. Ko S, Zhao MG, Toyoda H, Qiu CS, Zhuo M (2005) Altered behavioral responses to noxious stimuli and fear in glutamate receptor 5 (GluR5)- or GluR6-deficient mice. J Neurosci 25:977–984

    Article  PubMed  CAS  Google Scholar 

  98. Kobayashi M, Muroyama A, Ohizumi Y (1989) Phosphatidylinositol 4, 5-bisphosphate enhances calcium release from sarcoplasmic reticulum of skeletal muscle. Biochem Biophys Res Commun 163:1487–1491

    Article  PubMed  CAS  Google Scholar 

  99. Kobrinsky E, Mirshahi T, Zhang H, Jin T, Logothetis DE (2000) Receptor-mediated hydrolysis of plasma membrane messenger PIP2 leads to K + -current desensitization. Nat Cell Biol 2:507–514

    Article  PubMed  CAS  Google Scholar 

  100. Krapivinsky G, Medina I, Eng L, Krapivinsky L, Yang Y, Clapham DE (1998) A novel inward rectifier K + channel with unique pore properties. Neuron 20:995–1005

    Article  PubMed  CAS  Google Scholar 

  101. Krauter T, Ruppersberg JP, Baukrowitz T (2001) Phospholipids as modulators of K(ATP) channels: distinct mechanisms for control of sensitivity to sulphonylureas, K(+) channel openers, and ATP. Mol Pharmacol 59:1086–1093

    PubMed  CAS  Google Scholar 

  102. Kunzelmann K, Bachhuber T, Regeer R, Markovich D, Sun J, Schreiber R (2005) Purinergic inhibition of the epithelial Na + transport via hydrolysis of PIP2. FASEB J 19:142–143

    PubMed  CAS  Google Scholar 

  103. Kwon Y, Hofmann T, Montell C (2007) Integration of phosphoinositide- and calmodulin-mediated regulation of TRPC6. Mol Cell 25:491–503

    Article  PubMed  CAS  Google Scholar 

  104. Laird DW (2006) Life cycle of connexins in health and disease. Biochem J 394:527–543

    Article  PubMed  CAS  Google Scholar 

  105. Lawson K, McKay NG (2006) Modulation of potassium channels as a therapeutic approach. Curr Pharm Des 12:459–470

    Article  PubMed  CAS  Google Scholar 

  106. Lechner SG, Hussl S, Schicker KW, Drobny H, Boehm S (2005) Presynaptic inhibition via a phospholipase C- and phosphatidylinositol bisphosphate-dependent regulation of neuronal Ca2+ channels. Mol Pharmacol 68:1387–1396

    Article  PubMed  CAS  Google Scholar 

  107. Lee J, Cha SK, Sun TJ, Huang CL (2005) PIP2 activates TRPV5 and releases its inhibition by intracellular Mg2+. J Gen Physiol 126:439–451

    Article  PubMed  CAS  Google Scholar 

  108. Lei Q, Talley EM, Bayliss DA (2001) Receptor-mediated inhibition of G protein-coupled inwardly rectifying potassium channels involves Galpha q family subunits, phospholipase C, and a readily diffusible messenger. J Biol Chem 276:16720–16730

    Article  PubMed  CAS  Google Scholar 

  109. Lemonnier L, Trebak M, Putney JW Jr (2008) Complex regulation of the TRPC3, 6 and 7 channel subfamily by diacylglycerol and phosphatidylinositol-4, 5-bisphosphate. Cell Calcium 43:506–514

    Article  PubMed  CAS  Google Scholar 

  110. Leung YM, Zeng WZ, Liou HH, Solaro CR, Huang CL (2000) Phosphatidylinositol 4, 5-bisphosphate and intracellular pH regulate the ROMK1 potassium channel via separate but interrelated mechanisms. J Biol Chem 275:10182–10189

    Article  PubMed  CAS  Google Scholar 

  111. Li Y, Gamper N, Hilgemann DW, Shapiro MS (2005) Regulation of Kv7 (KCNQ) K + channel open probability by phosphatidylinositol 4, 5-bisphosphate. J Neurosci 25:9825–9835

    Article  PubMed  CAS  Google Scholar 

  112. Lin YW, Bushman JD, Yan FF, Haidar S, MacMullen C, Ganguly A, Stanley CA, Shyng SL (2008) Destabilization of ATP-sensitive potassium channel activity by novel KCNJ11 mutations identified in congenital hyperinsulinism. J Biol Chem 283:9146–9156

    Article  PubMed  CAS  Google Scholar 

  113. Lin YW, MacMullen C, Ganguly A, Stanley CA, Shyng SL (2006) A novel KCNJ11 mutation associated with congenital hyperinsulinism reduces the intrinsic open probability of beta-cell ATP-sensitive potassium channels. J Biol Chem 281:3006–3012

    Article  PubMed  CAS  Google Scholar 

  114. Liou HH, Zhou SS, Huang CL (1999) Regulation of ROMK1 channel by protein kinase A via a phosphatidylinositol 4, 5-bisphosphate-dependent mechanism. Proc Natl Acad Sci USA 96:5820–5825

    Article  PubMed  CAS  Google Scholar 

  115. Liu D, Liman ER (2003) Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc Natl Acad Sci USA 100:15160–15165

    Article  PubMed  CAS  Google Scholar 

  116. Liu B, Qin F (2005) Functional control of cold- and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4, 5-bisphosphate. J Neurosci 25:1674–1681

    Article  PubMed  CAS  Google Scholar 

  117. Liu B, Zhang C, Qin F (2005) Functional recovery from desensitization of vanilloid receptor TRPV1 requires resynthesis of phosphatidylinositol 4, 5-bisphosphate. J Neurosci 25:4835–4843

    Article  PubMed  CAS  Google Scholar 

  118. Lodge D (2009) The history of the pharmacology and cloning of ionotropic glutamate receptors and the development of idiosyncratic nomenclature. Neuropharmacology 56:6–21

    Article  PubMed  CAS  Google Scholar 

  119. Logothetis DE, Jin T, Lupyan D, Rosenhouse-Dantsker A (2007) Phosphoinositide-mediated gating of inwardly rectifying K(+) channels. Pflugers Arch 455:83–95

    Article  PubMed  CAS  Google Scholar 

  120. Logothetis DE, Lupyan D, Rosenhouse-Dantsker A (2007) Diverse Kir modulators act in close proximity to residues implicated in phosphoinositide binding. J Physiol 582:953–965

    Article  PubMed  CAS  Google Scholar 

  121. Lopes CM, Rohacs T, Czirjak G, Balla T, Enyedi P, Logothetis DE (2005) PIP2 hydrolysis underlies agonist-induced inhibition and regulates voltage gating of two-pore domain K + channels. J Physiol 564:117–129

    Article  PubMed  CAS  Google Scholar 

  122. Lopes CM, Zhang H, Rohacs T, Jin T, Yang J, Logothetis DE (2002) Alterations in conserved Kir channel-PIP2 interactions underlie channelopathies. Neuron 34:933–944

    Article  PubMed  CAS  Google Scholar 

  123. Loussouarn G, Park KH, Bellocq C, Baro I, Charpentier F, Escande D (2003) Phosphatidylinositol-4, 5-bisphosphate, PIP2, controls KCNQ1/KCNE1 voltage-gated potassium channels: a functional homology between voltage-gated and inward rectifier K + channels. EMBO J 22:5412–5421

    Article  PubMed  CAS  Google Scholar 

  124. Loussouarn G, Pike LJ, Ashcroft FM, Makhina EN, Nichols CG (2001) Dynamic sensitivity of ATP-sensitive K + channels to ATP. J Biol Chem 276:29098–29103

    Article  PubMed  CAS  Google Scholar 

  125. Lu W, Shi Y, Jackson AC, Bjorgan K, During MJ, Sprengel R, Seeburg PH, Nicoll RA (2009) Subunit composition of synaptic AMPA receptors revealed by a single-cell genetic approach. Neuron 62:254–268

    Article  PubMed  CAS  Google Scholar 

  126. Lukacs V, Thyagarajan B, Varnai P, Balla A, Balla T, Rohacs T (2007) Dual regulation of TRPV1 by phosphoinositides. J Neurosci 27:7070–7080

    Article  PubMed  CAS  Google Scholar 

  127. Lupu VD, Kaznacheyeva E, Krishna UM, Falck JR, Bezprozvanny I (1998) Functional coupling of phosphatidylinositol 4, 5-bisphosphate to inositol 1, 4, 5-trisphosphate receptor. J Biol Chem 273:14067–14070

    Article  PubMed  CAS  Google Scholar 

  128. Lyall V, Phan TT, Ren Z, Mummalaneni S, Melone P, Mahavadi S, Murthy KS, DeSimone JA (2010) Regulation of the putative TRPV1t salt taste receptor by phosphatidylinositol 4, 5-bisphosphate. J Neurophysiol 103:1337–1349. doi:10.1152/jn.00883.2009

    Article  PubMed  CAS  Google Scholar 

  129. Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84:87–136

    Article  PubMed  CAS  Google Scholar 

  130. Ma HP, Saxena S, Warnock DG (2002) Anionic phospholipids regulate native and expressed epithelial sodium channel (ENaC). J Biol Chem 277:7641–7644

    Article  PubMed  CAS  Google Scholar 

  131. MacGregor GG, Dong K, Vanoye CG, Tang L, Giebisch G, Hebert SC (2002) Nucleotides and phospholipids compete for binding to the C terminus of KATP channels. Proc Natl Acad Sci USA 99:2726–2731

    Article  PubMed  CAS  Google Scholar 

  132. Mandal M, Yan Z (2009) Phosphatidylinositol (4, 5)-bisphosphate regulation of N-methyl-D-aspartate receptor channels in cortical neurons. Mol Pharmacol 76:1349–1359

    Article  PubMed  CAS  Google Scholar 

  133. Marker CL, Cintora SC, Roman MI, Stoffel M, Wickman K (2002) Hyperalgesia and blunted morphine analgesia in G protein-gated potassium channel subunit knockout mice. NeuroReport 13:2509–2513

    Article  PubMed  CAS  Google Scholar 

  134. Marker CL, Stoffel M, Wickman K (2004) Spinal G-protein-gated K + channels formed by GIRK1 and GIRK2 subunits modulate thermal nociception and contribute to morphine analgesia. J Neurosci 24:2806–2812

    Article  PubMed  CAS  Google Scholar 

  135. Matsushita Y, Ohya S, Suzuki Y, Itoda H, Kimura T, Yamamura H, Imaizumi Y (2009) Inhibition of Kv1.3 potassium current by phosphoinositides and stromal-derived factor-1α in Jurkat T cells. Am J Physiol Cell Physiol 296:C1079–C1085

    Article  PubMed  CAS  Google Scholar 

  136. Meyer T, Wellner-Kienitz M-C, Biewald A, Bender K, Eickel A, Pott L (2001) Depletion of phosphatidylinositol 4, 5-bisphosphate by activation of phospholipase C-coupled receptors causes slow inhibition but not desensitization of G protein-gated inward rectifier K + current in atrial myocytes. J Biol Chem 276:5650–5658

    Article  PubMed  CAS  Google Scholar 

  137. Michailidis IE, Helton TD, Petrou VI, Mirshahi T, Ehlers MD, Logothetis DE (2007) Phosphatidylinositol-4, 5-bisphosphate regulates NMDA receptor activity through α-actinin. J Neurosci 27:5523–5532

    Article  PubMed  CAS  Google Scholar 

  138. Michailidis IE, Zhang Y, Yang J (2007) The lipid connection-regulation of voltage-gated Ca(2+) channels by phosphoinositides. Pflugers Arch 455:147–155

    Article  PubMed  CAS  Google Scholar 

  139. Mo G, Bernier LP, Zhao Q, Chabot-Dore AJ, Ase AR, Logothetis D, Cao CQ, Seguela P (2009) Subtype-specific regulation of P2X3 and P2X2/3 receptors by phosphoinositides in peripheral nociceptors. Mol Pain 5:47

    Article  PubMed  CAS  Google Scholar 

  140. Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256:1217–1221

    Article  PubMed  CAS  Google Scholar 

  141. Nawaz S, Kippert A, Saab AS, Werner HB, Lang T, Nave KA, Simons M (2009) Phosphatidylinositol 4, 5-bisphosphate-dependent interaction of myelin basic protein with the plasma membrane in oligodendroglial cells and its rapid perturbation by elevated calcium. J Neurosci 29:4794–4807

    Article  PubMed  CAS  Google Scholar 

  142. Niggli V, Adunyah ES, Carafoli E (1981) Acidic phospholipids, unsaturated fatty acids, and limited proteolysis mimic the effect of calmodulin on the purified erythrocyte Ca2 + -ATPase. J Biol Chem 256:8588–8592

    PubMed  CAS  Google Scholar 

  143. Nilius B (2007) TRP channels in disease. Biochim Biophys Acta 1772:805–812

    PubMed  CAS  Google Scholar 

  144. Nilius B, Droogmans G (2001) Ion channels and their functional role in vascular endothelium. Physiol Rev 81:1415–1459

    PubMed  CAS  Google Scholar 

  145. Nilius B, Mahieu F, Prenen J, Janssens A, Owsianik G, Vennekens R, Voets T (2006) The Ca2 + -activated cation channel TRPM4 is regulated by phosphatidylinositol 4, 5-biphosphate. EMBO J 25:467–478

    Article  PubMed  CAS  Google Scholar 

  146. Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87:165–217

    Article  PubMed  CAS  Google Scholar 

  147. Noel J, Roux D, Pouyssegur J (1996) Differential localization of Na+/H + exchanger isoforms (NHE1 and NHE3) in polarized epithelial cell lines. J Cell Sci 109:929–939

    PubMed  CAS  Google Scholar 

  148. Ohizumi Y, Hirata Y, Suzuki A, Kobayashi M (1999) Two novel types of calcium release from skeletal sarcoplasmic reticulum by phosphatidylinositol 4, 5-biphosphate. Can J Physiol Pharmacol 77:276–285

    Article  PubMed  CAS  Google Scholar 

  149. Oliver D, Lien CC, Soom M, Baukrowitz T, Jonas P, Fakler B (2004) Functional conversion between A-Type and delayed rectifier K + channels by membrane lipids. Science 304:265–270

    Article  PubMed  CAS  Google Scholar 

  150. Otsuguro K, Tang J, Tang Y, Xiao R, Freichel M, Tsvilovskyy V, Ito S, Flockerzi V, Zhu MX, Zholos AV (2008) Isoform-specific inhibition of TRPC4 channel by phosphatidylinositol 4, 5-bisphosphate. J Biol Chem 283:10026–10036

    Article  PubMed  CAS  Google Scholar 

  151. Oury C, Toth-Zsamboki E, Van Geet C, Thys C, Wei L, Nilius B, Vermylen J, Hoylaerts MF (2000) A natural dominant negative P2X1 receptor due to deletion of a single amino acid residue. J Biol Chem 275:22611–22614

    Article  PubMed  CAS  Google Scholar 

  152. Park KH, Piron J, Dahimene S, Merot J, Baro I, Escande D, Loussouarn G (2005) Impaired KCNQ1-KCNE1 and phosphatidylinositol-4, 5-bisphosphate interaction underlies the long QT syndrome. Circ Res 96:730–739

    Article  PubMed  CAS  Google Scholar 

  153. Pegan S, Arrabit C, Zhou W, Kwiatkowski W, Collins A, Slesinger PA, Choe S (2005) Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification. Nat Neurosci 8:279–287

    Article  PubMed  CAS  Google Scholar 

  154. Pian P, Bucchi A, Decostanzo A, Robinson RB, Siegelbaum SA (2007) Modulation of cyclic nucleotide-regulated HCN channels by PIP(2) and receptors coupled to phospholipase C. Pflugers Arch 455:125–145

    Article  PubMed  CAS  Google Scholar 

  155. Pian P, Bucchi A, Robinson RB, Siegelbaum SA (2006) Regulation of gating and rundown of HCN hyperpolarization-activated channels by exogenous and endogenous PIP2. J Gen Physiol 128:593–604

    Article  PubMed  CAS  Google Scholar 

  156. Pinheiro P, Mulle C (2006) Kainate receptors. Cell Tissue Res 326:457–482

    Article  PubMed  CAS  Google Scholar 

  157. Plaster NM, Tawil R, Tristani-Firouzi M, Canun S, Bendahhou S, Tsunoda A, Donaldson MR, Iannaccone ST, Brunt E, Barohn R, Clark J, Deymeer F, George AL Jr, Fish FA, Hahn A, Nitu A, Ozdemir C, Serdaroglu P, Subramony SH, Wolfe G, Fu YH, Ptacek LJ (2001) Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen's syndrome. Cell 105:511–519

    Article  PubMed  CAS  Google Scholar 

  158. Pochynyuk O, Bugaj V, Vandewalle A, Stockand JD (2008) Purinergic control of apical plasma membrane PI(4, 5)P2 levels sets ENaC activity in principal cells. Am J Physiol Renal Physiol 294:F38–F46

    Article  PubMed  CAS  Google Scholar 

  159. Pochynyuk O, Staruschenko A, Tong Q, Medina J, Stockand JD (2005) Identification of a functional phosphatidylinositol 3, 4, 5-trisphosphate binding site in the epithelial Na + channel. J Biol Chem 280:37565–37571

    Article  PubMed  CAS  Google Scholar 

  160. Pochynyuk O, Tong Q, Medina J, Vandewalle A, Staruschenko A, Bugaj V, Stockand JD (2007) Molecular determinants of PI(4, 5)P2 and PI(3, 4, 5)P3 regulation of the epithelial Na + channel. J Gen Physiol 130:399–413

    Article  PubMed  CAS  Google Scholar 

  161. Posada V, Beauge L, Berberian G (2007) Maximal Ca2 + i stimulation of cardiac Na+/Ca2+ exchange requires simultaneous alkalinization and binding of PtdIns-4, 5–P2 to the exchanger. Biol Chem 388:281–288

    Article  PubMed  CAS  Google Scholar 

  162. Prasad V, Okunade GW, Miller ML, Shull GE (2004) Phenotypes of SERCA and PMCA knockout mice. Biochem Biophys Res Commun 322:1192–1203

    Article  PubMed  CAS  Google Scholar 

  163. Pravetoni M, Wickman K (2008) Behavioral characterization of mice lacking GIRK/Kir3 channel subunits. Genes Brain Behav 7:523–531

    Article  PubMed  CAS  Google Scholar 

  164. Prescott ED, Julius D (2003) A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 300:1284–1288

    Article  PubMed  CAS  Google Scholar 

  165. Priori SG, Napolitano C (2005) Cardiac and skeletal muscle disorders caused by mutations in the intracellular Ca2+ release channels. J Clin Invest 115:2033–2038

    Article  PubMed  CAS  Google Scholar 

  166. Putney LK, Denker SP, Barber DL (2002) The changing face of the Na+/H + exchanger, NHE1: structure, regulation, and cellular actions. Annu Rev Pharmacol Toxicol 42:527–552

    Article  PubMed  CAS  Google Scholar 

  167. Rapedius M, Haider S, Browne KF, Shang L, Sansom MS, Baukrowitz T, Tucker SJ (2006) Structural and functional analysis of the putative pH sensor in the Kir1.1 (ROMK) potassium channel. EMBO Rep 7:611–616

    PubMed  CAS  Google Scholar 

  168. Reimann F, Huopio H, Dabrowski M, Proks P, Gribble FM, Laakso M, Otonkoski T, Ashcroft FM (2003) Characterisation of new KATP-channel mutations associated with congenital hyperinsulinism in the Finnish population. Diabetologia 46:241–249

    Article  PubMed  CAS  Google Scholar 

  169. Rittenhouse AR (2008) PIP2 PIP2 hooray for maxi K+. J Gen Physiol 132:5–8

    Article  PubMed  CAS  Google Scholar 

  170. Robbins J, Marsh SJ, Brown DA (2006) Probing the regulation of M (Kv7) potassium channels in intact neurons with membrane-targeted peptides. J Neurosci 26:7950–7961

    Article  PubMed  CAS  Google Scholar 

  171. Rohacs T, Chen J, Prestwich GD, Logothetis DE (1999) Distinct specificities of inwardly rectifying K(+) channels for phosphoinositides. J Biol Chem 274:36065–36072

    Article  PubMed  CAS  Google Scholar 

  172. Rohacs T, Lopes CM, Jin T, Ramdya PP, Molnar Z, Logothetis DE (2003) Specificity of activation by phosphoinositides determines lipid regulation of Kir channels. Proc Natl Acad Sci USA 100:745–750

    Article  PubMed  CAS  Google Scholar 

  173. Rohacs T, Lopes CM, Michailidis I, Logothetis DE (2005) PI(4, 5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 8:626–634

    Article  PubMed  CAS  Google Scholar 

  174. Romero MF, Fulton CM, Boron WF (2004) The SLC4 family of HCO 3—transporters. Pflugers Arch 447:495–509

    Article  PubMed  CAS  Google Scholar 

  175. Rosenhouse-Dantsker A, Logothetis DE (2007) Molecular characteristics of phosphoinositide binding. Pflugers Arch 455:45–53

    Article  PubMed  CAS  Google Scholar 

  176. Rousset M, Cens T, Gouin-Charnet A, Scamps F, Charnet P (2004) Ca2+ and phosphatidylinositol 4, 5-bisphosphate stabilize a Gβγ-sensitive state of CaV2 Ca2+ channels. J Biol Chem 279:14619–14630

    Article  PubMed  CAS  Google Scholar 

  177. Runnels LW, Yue L, Clapham DE (2002) The TRPM7 channel is inactivated by PIP(2) hydrolysis. Nat Cell Biol 4:329–336

    PubMed  CAS  Google Scholar 

  178. Ryan DP, da Silva MR, Soong TW, Fontaine B, Donaldson MR, Kung AW, Jongjaroenprasert W, Liang MC, Khoo DH, Cheah JS, Ho SC, Bernstein HS, Maciel RM, Brown RH Jr, Ptacek LJ (2010) Mutations in potassium channel Kir2.6 cause susceptibility to thyrotoxic hypokalemic periodic paralysis. Cell 140:88–98

    Article  PubMed  CAS  Google Scholar 

  179. Saleh SN, Albert AP, Large WA (2009) Obligatory role for phosphatidylinositol 4, 5-bisphosphate in activation of native TRPC1 store-operated channels in vascular myocytes. J Physiol 587:531–540

    Article  PubMed  CAS  Google Scholar 

  180. Saleh SN, Albert AP, Large WA (2009) Activation of native TRPC1/C5/C6 channels by endothelin-1 is mediated by both PIP3 and PIP2 in rabbit coronary artery myocytes. J Physiol 587:5361–5375

    Article  PubMed  CAS  Google Scholar 

  181. Salkoff L, Butler A, Ferreira G, Santi C, Wei A (2006) High-conductance potassium channels of the SLO family. Nat Rev Neurosci 7:921–931

    Article  PubMed  CAS  Google Scholar 

  182. Schulte U, Hahn H, Konrad M, Jeck N, Derst C, Wild K, Weidemann S, Ruppersberg JP, Fakler B, Ludwig J (1999) pH gating of ROMK (Kir1.1) channels: control by an Arg-Lys-Arg triad disrupted in antenatal Bartter syndrome. Proc Natl Acad Sci USA 96:15298–15303

    Article  PubMed  CAS  Google Scholar 

  183. Schulze D, Krauter T, Fritzenschaft H, Soom M, Baukrowitz T (2003) Phosphatidylinositol 4, 5-bisphosphate (PIP2) modulation of ATP and pH sensitivity in Kir channels. A tale of an active and a silent PIP2 site in the N terminus. J Biol Chem 278:10500–10505

    Article  PubMed  CAS  Google Scholar 

  184. Schwalbe RA, Bianchi L, Accili EA, Brown AM (1998) Functional consequences of ROMK mutants linked to antenatal Bartter's syndrome and implications for treatment. Hum Mol Genet 7:975–980

    Article  PubMed  CAS  Google Scholar 

  185. Shepherd JD, Huganir RL (2007) The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu Rev Cell Dev Biol 23:613–643

    Article  PubMed  CAS  Google Scholar 

  186. Shyng SL, Cukras CA, Harwood J, Nichols CG (2000) Structural determinants of PIP(2) regulation of inward rectifier K(ATP) channels. J Gen Physiol 116:599–608

    Article  PubMed  CAS  Google Scholar 

  187. Shyng SL, Nichols CG (1998) Membrane phospholipid control of nucleotide sensitivity of KATP channels. Science 282:1138–1141

    Article  PubMed  CAS  Google Scholar 

  188. Sobolevsky AI, Rosconi MP, Gouaux E (2009) X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462:745–756

    Article  PubMed  CAS  Google Scholar 

  189. Soom M, Schonherr R, Kubo Y, Kirsch C, Klinger R, Heinemann SH (2001) Multiple PIP2 binding sites in Kir2.1 inwardly rectifying potassium channels. FEBS Lett 490:49–53

    Article  PubMed  CAS  Google Scholar 

  190. Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, Napolitano C, Schwartz PJ, Joseph RM, Condouris K, Tager-Flusberg H, Priori SG, Sanguinetti MC, Keating MT (2004) Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119:19–31

    Article  PubMed  CAS  Google Scholar 

  191. Staruschenko A, Pochynyuk O, Vandewalle A, Bugaj V, Stockand JD (2007) Acute regulation of the epithelial Na + channel by phosphatidylinositide 3-OH kinase signaling in native collecting duct principal cells. J Am Soc Nephrol 18:1652–1661

    Article  PubMed  CAS  Google Scholar 

  192. Stein AT, Ufret-Vincenty CA, Hua L, Santana LF, Gordon SE (2006) Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J Gen Physiol 128:509–522

    Article  PubMed  CAS  Google Scholar 

  193. Suh BC, Hille B (2002) Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4, 5-bisphosphate synthesis. Neuron 35:507–520

    Article  PubMed  CAS  Google Scholar 

  194. Suh BC, Hille B (2005) Regulation of ion channels by phosphatidylinositol 4, 5-bisphosphate. Curr Opin Neurobiol 15:370–378

    Article  PubMed  CAS  Google Scholar 

  195. Suh BC, Hille B (2008) PIP2 is a necessary cofactor for ion channel function: how and why? Annu Rev Biophys 37:175–195

    Article  PubMed  CAS  Google Scholar 

  196. Suh BC, Inoue T, Meyer T, Hille B (2006) Rapid chemically induced changes of PtdIns(4, 5)P2 gate KCNQ ion channels. Science 314:1454–1457

    Article  PubMed  CAS  Google Scholar 

  197. Sui JL, Petit-Jacques J, Logothetis DE (1998) Activation of the atrial KACh channel by the βγ subunits of G proteins or intracellular Na + ions depends on the presence of phosphatidylinositol phosphates. Proc Natl Acad Sci USA 95:1307–1312

    Article  PubMed  CAS  Google Scholar 

  198. Surprenant A, North RA (2009) Signaling at purinergic P2X receptors. Annu Rev Physiol 71:333–359

    Article  PubMed  CAS  Google Scholar 

  199. Thyagarajan B, Benn BS, Christakos S, Rohacs T (2009) Phospholipase C-mediated regulation of transient receptor potential vanilloid 6 channels: implications in active intestinal Ca2+ transport. Mol Pharmacol 75:608–616

    Article  PubMed  CAS  Google Scholar 

  200. Thyagarajan B, Lukacs V, Rohacs T (2008) Hydrolysis of phosphatidylinositol 4, 5-bisphosphate mediates calcium-induced inactivation of TRPV6 channels. J Biol Chem 283:14980–14987

    Article  PubMed  CAS  Google Scholar 

  201. Tong Q, Gamper N, Medina JL, Shapiro MS, Stockand JD (2004) Direct activation of the epithelial Na + channel by phosphatidylinositol 3, 4, 5-trisphosphate and phosphatidylinositol 3, 4-bisphosphate produced by phosphoinositide 3-OH kinase. J Biol Chem 279:22654–22663

    Article  PubMed  CAS  Google Scholar 

  202. Tong Q, Stockand JD (2005) Receptor tyrosine kinases mediate epithelial Na + channel inhibition by epidermal growth factor. Am J Physiol Renal Physiol 288:F150–F161

    Article  PubMed  CAS  Google Scholar 

  203. Trebak M, Lemonnier L, DeHaven WI, Wedel BJ, Bird GS, Putney JW Jr (2009) Complex functions of phosphatidylinositol 4, 5-bisphosphate in regulation of TRPC5 cation channels. Pflugers Arch 457:757–769

    Article  PubMed  CAS  Google Scholar 

  204. Vaithianathan T, Bukiya A, Liu J, Liu P, Asuncion-Chin M, Fan Z, Dopico A (2008) Direct regulation of BK channels by phosphatidylinositol 4, 5-bisphosphate as a novel signaling pathway. J Gen Physiol 132:13–28

    Article  PubMed  CAS  Google Scholar 

  205. van Zeijl L, Ponsioen B, Giepmans BNG, Ariaens A, Postma FR, Varnai P, Balla T, Divecha N, Jalink K, Moolenaar WH (2007) Regulation of connexin43 gap junctional communication by phosphatidylinositol 4, 5-bisphosphate. J Cell Biol 177:881–891

    Article  PubMed  CAS  Google Scholar 

  206. Varnai P, Thyagarajan B, Rohacs T, Balla T (2006) Rapidly inducible changes in phosphatidylinositol 4, 5-bisphosphate levels influence multiple regulatory functions of the lipid in intact living cells. J Cell Biol 175:377–382

    Article  PubMed  CAS  Google Scholar 

  207. Vemuri R, Philipson KD (1988) Phospholipid composition modulates the Na + -Ca2+ exchange activity of cardiac sarcolemma in reconstituted vesicles. Biochim Biophys Acta 937:258–268

    Article  PubMed  CAS  Google Scholar 

  208. Vicinanza M, D'Angelo G, Di Campli A, De Matteis MA (2008) Phosphoinositides as regulators of membrane trafficking in health and disease. Cell Mol Life Sci 65:2833–2841

    Article  PubMed  CAS  Google Scholar 

  209. Vohra J (2007) The long QT syndrome. Heart Lung Circ 16:S5–S12

    Article  PubMed  Google Scholar 

  210. Voronov SV, Frere SG, Giovedi S, Pollina EA, Borel C, Zhang H, Schmidt C, Akeson EC, Wenk MR, Cimasoni L, Arancio O, Davisson MT, Antonarakis SE, Gardiner K, De Camilli P, Di Paolo G (2008) Synaptojanin 1-linked phosphoinositide dyshomeostasis and cognitive deficits in mouse models of Down's syndrome. Proc Natl Acad Sci USA 105:9415–9420

    Article  PubMed  Google Scholar 

  211. Wei AD, Gutman GA, Aldrich R, Chandy KG, Grissmer S, Wulff H (2005) International Union of pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacol Rev 57:463–472

    Article  PubMed  CAS  Google Scholar 

  212. Winks JS, Hughes S, Filippov AK, Tatulian L, Abogadie FC, Brown DA, Marsh SJ (2005) Relationship between membrane phosphatidylinositol-4, 5-bisphosphate and receptor-mediated inhibition of native neuronal M channels. J Neurosci 25:3400–3413

    Article  PubMed  CAS  Google Scholar 

  213. Womack KB, Gordon SE, He F, Wensel TG, Lu CC, Hilgemann DW (2000) Do phosphatidylinositides modulate vertebrate phototransduction? J Neurosci 20:2792–2799

    PubMed  CAS  Google Scholar 

  214. Wu L, Bauer CS, Zhen XG, Xie C, Yang J (2002) Dual regulation of voltage-gated calcium channels by PtdIns(4, 5)P2. Nature 419:947–952

    Article  PubMed  CAS  Google Scholar 

  215. Wu J, McNicholas CM, Bevensee MO (2009) Phosphatidylinositol 4, 5-bisphosphate (PIP2) stimulates the electrogenic Na/HCO3 cotransporter NBCe1-A expressed in Xenopus oocytes. Proc Natl Acad Sci USA 106:14150–14155

    Article  PubMed  Google Scholar 

  216. Wulff H, Zhorov BS (2008) K + channel modulators for the treatment of neurological disorders and autoimmune diseases. Chem Rev 108:1744–1773

    Article  PubMed  CAS  Google Scholar 

  217. Xie LH, Horie M, Takano M (1999) Phospholipase C-linked receptors regulate the ATP-sensitive potassium channel by means of phosphatidylinositol 4, 5-bisphosphate metabolism. Proc Natl Acad Sci USA 96:15292–15297

    Article  PubMed  CAS  Google Scholar 

  218. Xie LH, John SA, Ribalet B, Weiss JN (2008) Phosphatidylinositol-4, 5-bisphosphate (PIP2) regulation of strong inward rectifier Kir2.1 channels: multilevel positive cooperativity. J Physiol 586:1833–1848

    Article  PubMed  CAS  Google Scholar 

  219. Yamamoto S, Ichishima K, Ehara T (2008) Regulation of volume-regulated outwardly rectifying anion channels by phosphatidylinositol 3, 4, 5-trisphosphate in mouse ventricular cells. Biomed Res 29:307–315

    Article  PubMed  CAS  Google Scholar 

  220. Yang Z, Xu H, Cui N, Qu Z, Chanchevalap S, Shen W, Jiang C (2000) Biophysical and molecular mechanisms underlying the modulation of heteromeric Kir4.1-Kir5.1 channels by CO2 and pH. J Gen Physiol 116:33–45

    Article  PubMed  CAS  Google Scholar 

  221. Yao J, Qin F (2009) Interaction with phosphoinositides confers adaptation onto the TRPV1 pain receptor. PLoS Biol 7:e46

    Article  PubMed  CAS  Google Scholar 

  222. Yaradanakul A, Feng S, Shen C, Lariccia V, Lin MJ, Yang J, Kang TM, Dong P, Yin HL, Albanesi JP, Hilgemann DW (2007) Dual control of cardiac Na+–Ca2+ exchange by PIP2: electrophysiological analysis of direct and indirect mechanisms. J Physiol 582:991–1010

    Article  PubMed  CAS  Google Scholar 

  223. Yue G, Malik B, Yue G, Eaton DC (2002) Phosphatidylinositol 4, 5-bisphosphate (PIP2) stimulates epithelial sodium channel activity in A6 cells. J Biol Chem 277:11965–11969

    Article  PubMed  CAS  Google Scholar 

  224. Zaika O, Lara LS, Gamper N, Hilgemann DW, Jaffe DB, Shapiro MS (2006) Angiotensin II regulates neuronal excitability via phosphatidylinositol 4, 5-bisphosphate-dependent modulation of Kv7 (M-type) K + channels. J Physiol 575:49–67

    Article  PubMed  CAS  Google Scholar 

  225. Zeng WZ, Li XJ, Hilgemann DW, Huang CL (2003) Protein kinase C inhibits ROMK1 channel activity via a phosphatidylinositol 4, 5-bisphosphate-dependent mechanism. J Biol Chem 278:16852–16856

    Article  PubMed  CAS  Google Scholar 

  226. Zeng WZ, Liou HH, Krishna UM, Falck JR, Huang CL (2002) Structural determinants and specificities for ROMK1-phosphoinositide interaction. Am J Physiol Renal Physiol 282:F826–F834

    PubMed  CAS  Google Scholar 

  227. Zhainazarov AB, Spehr M, Wetzel CH, Hatt H, Ache BW (2004) Modulation of the olfactory CNG channel by Ptdlns(3, 4, 5)P3. J Membr Biol 201:51–57

    Article  PubMed  CAS  Google Scholar 

  228. Zhang ZR, Chou CF, Wang J, Liang YY, Ma HP (2010) Anionic phospholipids differentially regulate the epithelial sodium channel (ENaC) by interacting with α, β, and γ ENaC subunits. Pflugers Arch 459:377–387

    Article  PubMed  CAS  Google Scholar 

  229. Zhang H, Craciun LC, Mirshahi T, Rohacs T, Lopes CM, Jin T, Logothetis DE (2003) PIP(2) activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron 37:963–975

    Article  PubMed  CAS  Google Scholar 

  230. Zhang H, He C, Yan X, Mirshahi T, Logothetis DE (1999) Activation of inwardly rectifying K + channels by distinct PtdIns(4, 5)P2 interactions. Nat Cell Biol 1:183–188

    Article  PubMed  CAS  Google Scholar 

  231. Zhang Z, Okawa H, Wang Y, Liman ER (2005) Phosphatidylinositol 4, 5-bisphosphate rescues TRPM4 channels from desensitization. J Biol Chem 280:39185–39192

    Article  PubMed  CAS  Google Scholar 

  232. Zhao Q, Logothetis DE, Seguela P (2007) Regulation of ATP-gated P2X receptors by phosphoinositides. Pflugers Arch 455:181–185

    Article  PubMed  CAS  Google Scholar 

  233. Zhao Q, Yang M, Ting AT, Logothetis DE (2007) PIP2 regulates the ionic current of P2X receptors and P2X7-mediated cell death. Channels (Austin) 1:46–55

    Google Scholar 

  234. Zhen XG, Xie C, Yamada Y, Zhang Y, Doyle C, Yang J (2006) A single amino acid mutation attenuates rundown of voltage-gated calcium channels. FEBS Lett 580:5733–5738

    Article  PubMed  CAS  Google Scholar 

  235. Zolles G, Klocker N, Wenzel D, Weisser-Thomas J, Fleischmann BK, Roeper J, Fakler B (2006) Pacemaking by HCN channels requires interaction with phosphoinositides. Neuron 52:1027–1036

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank past and present members of the Logothetis lab, whose dedicated efforts in studying phosphoinositide control of ion channel activity have culminated to the insights presented in this review. This work was supported by NIH grants HL059949 and HL090882 to DEL. RM was supported by an NIH NHLBI F30 pre-doctoral grant award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diomedes E. Logothetis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Logothetis, D.E., Petrou, V.I., Adney, S.K. et al. Channelopathies linked to plasma membrane phosphoinositides. Pflugers Arch - Eur J Physiol 460, 321–341 (2010). https://doi.org/10.1007/s00424-010-0828-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0828-y

Keywords

Navigation