Skip to main content
Log in

Molecular characteristics of phosphoinositide binding

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Phosphoinositides in general and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 or PIP2) in particular have been recently found to function as important regulators of ion channels. Yet, while specific residues have been identified that affect channel–PIP2 interactions, the precise binding site of PIP2 has not been determined in any case. In addition to binding ion channels, however, phosphoinositides interact with a plethora of other proteins, and in a number of cases, the crystallographic structures of the complexes have been determined. Based on a database of 25 complexed crystallographic structures, we have addressed the molecular characteristics of phosphoinositide binding to proteins. Implications to phosphoinositide binding to ion channels are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baukrowitz T, Schulte U, Oliver D, Herlitze S, Krauter T, Tucker SJ, Ruppersberg JP, Fakler B (1998) PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science 282:1141–1144

    Article  PubMed  CAS  Google Scholar 

  2. Fan Z, Makielski JC (1997) Anionic phospholipids activate ATP-sensitive potassium channels. J Biol Chem 272:5388–5395

    Article  PubMed  CAS  Google Scholar 

  3. Hilgemann DW, Ball R (1996) Regulation of cardiac Na+/Ca2+ exchange and KATP potassium channels by PIP2. Science 273:956–959

    Article  PubMed  CAS  Google Scholar 

  4. Huang CL, Feng S, Hilgemann DW (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gβγ. Nature 391:803–806

    Article  PubMed  CAS  Google Scholar 

  5. Rohács T, Chen J, Prestwich GD, Logothetis DE (1999) Distinct specificities of inwardly rectifying K+ channels for phosphoinositides. J Biol Chem 274:36065–36072

    Article  PubMed  Google Scholar 

  6. Shyng SL, Nichols CG (1998) Membrane phospholipid control of nucleotide sensitivity of KATP channels. Science 282:1138–1141

    Article  PubMed  CAS  Google Scholar 

  7. Sui JL, Petit Jacques J, Logothetis DE (1998) Activation of the atrial KACh channel by the betagamma subunits of G proteins or intracellular Na+ ions depends on the presence of phosphatidylinositol phosphates. Proc Natl Acad Sci U S A 95:1307–1312

    Article  PubMed  CAS  Google Scholar 

  8. Zhang H, He C, Yan X, Mirshahi T, Logothetis DE (1999) Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions. Nat Cell Biol 1:183–188

    Article  PubMed  CAS  Google Scholar 

  9. Lopes CMB, Zhang H, Rohács T, Jin T, Logothetis DE (2002) Alterations in conserved Kir channel–PIP2 interactions underlie channelopathies. Neuron 34:933–944

    Article  PubMed  CAS  Google Scholar 

  10. Rohács T, Lopes CM, Jin T, Ramdya PP, Molnar Z, Logothetis DE (2003) Specificity of activation by phosphoinositides determines lipid regulation of Kir channels. Proc Natl Acad Sci USA 100:745–750

    Article  PubMed  CAS  Google Scholar 

  11. Hyvonen M, Macias MJ, Nilges M, Oschkinat H, Saraste M, Wilmanns M (1995) Structure of the binding site for inositol phosphates in a PH domain. EMBO J 14:4676–4685

    PubMed  CAS  Google Scholar 

  12. Ferguson KM, Lemmon MA, Schlessinger J, Sigler PB (1995) Structure of the high affinity complex of inositol trisphosphate with a phospholipase C pleckstrin homology domain. Cell 83:1037–1046

    Article  PubMed  CAS  Google Scholar 

  13. Baraldi E, Carugo KD, Hyvonen M, Surdo PL, Riley AM, Potter BV, O’Brien R, Ladbury JE, Saraste M (1999) Structure of the PH domain from Bruton’s tyrosine kinase in complex with inositol 1,3,4,5-tetrakisphosphate. Structure 7:449–460

    Article  PubMed  CAS  Google Scholar 

  14. Lietzke SE, Bose S, Cronin T, Klarlund J, Chawla A, Czech MP, Lambright DG (2000) Structural basis of 3-phosphoinositide recognition by pleckstrin homology domains. Mol Cell 6:385–394

    Article  PubMed  CAS  Google Scholar 

  15. Ferguson KM, Kavran JM, Sankaran VG, Fournier E, Isakoff SJ, Skolnik EY, Lemmon MA (2000) Structural basis for discrimination of 3-phosphoinositides by pleckstrin homology domains. Mol Cell 6:373–384

    Article  PubMed  CAS  Google Scholar 

  16. Milburn CC, Deak M, Kelly SM, Price NC, Alessi DR, Van Aalten DM (2003) Binding of phosphatidylinositol 3,4,5-trisphosphate to the pleckstrin homology domain of protein kinase B induces a conformational change. Biochem J 375:531–538

    Article  PubMed  CAS  Google Scholar 

  17. Komander D, Fairservice A, Deak M, Kular GS, Prescott AR, Peter Downes C, Safrany ST, Alessi DR, van Aalten DM (2004) Structural insights into the regulation of PDK1 by phosphoinositides and inositol phosphates. EMBO J 23:3918–3928

    Article  PubMed  CAS  Google Scholar 

  18. Milburn CC, Komander D, Deak M, Alessi DR, van Aalten DM (2007) Crystal structure of the pleckstrin homology domain of PEPP1 (in press)

  19. Ford MG, Mills IG, Peter BJ, Vallis Y, Praefcke GJ, Evans PR, McMahon HT (2002) Curvature of clathrin-coated pits driven by epsin. Nature 419:361–366

    Article  PubMed  CAS  Google Scholar 

  20. Ford MG, Pearse BM, Higgins MK, Vallis Y, Owen DJ, Gibson A, Hopkins CR, Evans PR, McMahon HT (2001) Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 291:1051–1055

    Article  PubMed  CAS  Google Scholar 

  21. Stolt PC, Jeon H, Song HK, Herz J, Eck MJ, Blacklow SC (2003) Origins of peptide selectivity and phosphoinositide binding revealed by structures of disabled-1 PTB domain complexes. Structure 11:569–579

    Article  PubMed  CAS  Google Scholar 

  22. Yun M, Keshvara L, Park CG, Zhang YM, Dickerson JB, Zheng J, Rock CO, Curran T, Park HW (2003) Crystal structures of the Dab homology domains of mouse disabled 1 and 2. J Biol Chem 278:36572–36581

    Article  PubMed  CAS  Google Scholar 

  23. Essen LO, Perisic O, Katan M, Wu Y, Roberts MF, Williams RL (1997) Structural mapping of the catalytic mechanism for a mammalian phosphoinositide-specific phospholipase C. Biochemistry 36:1704–1718

    Article  PubMed  CAS  Google Scholar 

  24. Bravo J, Karathanassis D, Pacold CM, Pacold ME, Ellson CD, Anderson KE, Butler PJ, Lavenir I, Perisic O, Hawkins PT, Stephens L, Williams RL (2001) The crystal structure of the PX domain from p40(phox) bound to phosphatidylinositol 3-phosphate. Mol Cell 8:829–839

    Article  PubMed  CAS  Google Scholar 

  25. Karathanassis D, Stahelin RV, Bravo J, Perisic O, Pacold CM, Cho W, Williams RL (2002) Binding of the PX domain of p47(phox) to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO J 21:5057–5068

    Article  PubMed  CAS  Google Scholar 

  26. Santagata S, Boggon TJ, Baird CL, Gomez CA, Zhao J, Shan WS, Myszka DG, Shapiro L (2001) G-protein signaling through tubby proteins. Science 292:2041–2050

    Article  PubMed  CAS  Google Scholar 

  27. Gonzalez B, Schell MJ, Letcher AJ, Veprintsev DB, Irvine RF, Williams RL (2004) Structure of a human inositol 1,4,5-trisphosphate 3-kinase: substrate binding reveals why it is not a phosphoinositide 3-kinase. Mol Cell 15:689–701

    Article  PubMed  CAS  Google Scholar 

  28. Miller GJ, Wilson MP, Majerus PW, Hurley JH (2005) Specificity determinants in inositol polyphosphate synthesis: crystal structure of inositol 1,3,4-trisphosphate 5/6-kinase. Mol Cell 18:201–212

    Article  PubMed  CAS  Google Scholar 

  29. Bosanac I, Alattia JR, Mal TK, Chan J, Talarico S, Tong FK, Tong KI, Yoshikawa F, Furuichi T, Iwai M, Michikawa T, Mikoshiba K, Ikura M (2002) Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand. Nature 420:696–700

    Article  PubMed  CAS  Google Scholar 

  30. Isakoff SJ, Cardozo T, Andreev J, Li Z, Ferguson KM, Abagyan R, Lemmon MA, Aronheim A, Skolnik EY (1998) Identification and analysis of PH domain-containing targets of phosphatidylinositol 3-kinase using a novel in vivo assay in yeast. EMBO J 17:5374–5387

    Article  PubMed  CAS  Google Scholar 

  31. Lemmon MA, Ferguson KM (2001) Molecular determinants in pleckstrin homology domains that allow specific recognition of phosphoinositides. Biochem Soc Trans 29:377–384

    Article  PubMed  CAS  Google Scholar 

  32. Dowler S, Currie RA, Campbell DG, Deak M, Kular G, Downes CP, Alessi DR (2000) Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. Biochem J 351:19–31

    Article  PubMed  CAS  Google Scholar 

  33. Lemmon MA (2004) Pleckstrin homology domains: not just for phosphoinositides. Biochem Soc Trans 32:707–711

    Article  PubMed  CAS  Google Scholar 

  34. Teo H, Gill DJ, Sun J, Perisic O, Veprintsev DB, Vallis Y, Emr SD, Williams RL (2006) ESCRT-I core and ESCRT-II GLUE domain structures reveal role for GLUE in linking to ESCRT-I and membranes. Cell 125:99–111

    Article  PubMed  CAS  Google Scholar 

  35. Di Lello P, Nguyen BD, Jones TN, Potempa K, Kobor MS, Legault P, Omichinski JG (2005) NMR structure of the amino-terminal domain from the Tfb1 subunit of TFIIH and characterization of its phosphoinositide and VP16 binding sites. Biochemistry 44:7678–7686

    Article  PubMed  CAS  Google Scholar 

  36. Bottomley MJ, Salim K, Panayotou G (1998) Phospholipid-binding protein domains. Biochim Biophys Acta 1436:165–183

    PubMed  CAS  Google Scholar 

  37. Narayan K, Lemmon MA (2006) Determining selectivity of phosphoinositide-binding domains. Methods 39:122–133

    Article  PubMed  CAS  Google Scholar 

  38. Rebecchi MJ, Scarlata S (1998) Pleckstrin homology domains: a common fold with diverse functions. Annu Rev Biophys Biomol Struct 27:503–528

    Article  PubMed  CAS  Google Scholar 

  39. Kojima T, Fukuda M, Watanabe Y, Hamazato F, Mikoshiba K (1997) Characterization of the pleckstrin homology domain of BTK as an inositol polyphosphate and phosphoinositide binding domain. Biochem Biophys Res Commun 236:333–339

    Article  PubMed  CAS  Google Scholar 

  40. Soom M, Schonherr R, Kubo Y, Kirsch C, Klinger R, Heinemann SH (2001) Multiple PIP2 binding sites in Kir2.1 inwardly rectifying potassium channels. FEBS Lett 490:49–53

    Article  PubMed  CAS  Google Scholar 

  41. Du X, Zhang H, Lopes C, Mirshahi T, Rohacs T, Logothetis DE (2004) Characteristic interactions with phosphatidylinositol 4,5-bisphosphate determine regulation of kir channels by diverse modulators. J Biol Chem 279:37271–37281

    Article  PubMed  CAS  Google Scholar 

  42. Shyng SL, Cukras CA, Harwood J, Nichols CG (2000) Structural determinants of PIP2 regulation of inward rectifier KATP channels. J Gen Physiol 116:599–608

    Article  PubMed  CAS  Google Scholar 

  43. DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos, CA

    Google Scholar 

  44. Guarnieri F, Wilson SR (1995) Conformational memories and a simulated annealing program that learns. Application to LTB4. J Comput Chem 16:648–653

    Article  CAS  Google Scholar 

  45. Guarnieri F, Weinstein H (1996) Conformational memories and the exploration of biologically relevant peptide conformations: an illustration for the gonadotropin releasing hormone. J Am Chem Soc 118:5580–5589

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avia Rosenhouse-Dantsker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenhouse-Dantsker, A., Logothetis, D.E. Molecular characteristics of phosphoinositide binding. Pflugers Arch - Eur J Physiol 455, 45–53 (2007). https://doi.org/10.1007/s00424-007-0291-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0291-6

Keywords

Navigation