Skip to main content
Log in

Phosphatidylinositol 4,5-bisphosphate interactions with the HERG K+ channel

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Regulation of ion channel activity plays a central role in controlling heart rate, rhythm, and contractility responses to cardiovascular demands. Dynamic beat-to-beat regulation of ion channels is precisely adjusted by autonomic stimulation of cardiac G protein-coupled receptors. The rapidly activating delayed rectifier K+ current (I Kr) is produced by the channel that is encoded by human ether-a-gogo-related gene (HERG) and is essential for the proper repolarization of the cardiac myocyte at the end of each action potential. Reduction of I Kr via HERG mutations or drug block can lead to lethal cardiac tachyarrhythmias. Autonomic regulation of HERG channels is an area of active investigation with the emerging picture of a complex interplay of signal transduction events, including kinases, second messengers, and protein–protein interactions. A recently described pathway for regulation of HERG is through channel interaction with the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2). Changes in cellular PIP2 concentrations may occur with Gq-coupled receptor activation. Here, we review the evidence for PIP2–HERG interactions, its potential biological significance, and unfilled gaps in our understanding of this regulatory mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sanguinetti MC, Jurkiewicz NK (1990) Two components of the delayed rectifier K+ current: differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol 96:195–215

    Article  PubMed  CAS  Google Scholar 

  2. Jurkiewicz NK, Sanguinetti MC (1993) Rate-dependent prolongation of cardiac action potentials by a methanesulfonanilide class III antiarrhythmic agent. Circ Res 72:75–83

    PubMed  CAS  Google Scholar 

  3. Sanguinetti MC, Jurkiewicz NK, Scott A, Siegl PK (1991) Isoproterenol antagonizes prolongation of refractory period by the class III antiarrhythmic agent E-4031 in guinea pig myocytes. Mechanism of action. Circ Res 68:77–84

    PubMed  CAS  Google Scholar 

  4. Warmke JW, Ganetzky B (1994) A family of potassium channel genes related to eag in Drosophila and mammals. Proc Natl Acad Sci U S A 91:3438–3442

    Article  PubMed  CAS  Google Scholar 

  5. Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED et al (1995) A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 80:795–803

    Article  PubMed  CAS  Google Scholar 

  6. Trudeau MC, Warmke JW, Ganetzky B, Robertson GA (1995) HERG, a human inward rectifier in the voltage-gated potassium channel family. Science 269:92–95

    Article  PubMed  CAS  Google Scholar 

  7. Perry M, de Groot MJ, Helliwell R, Leishman D, Tristani-Firouzi M et al (2004) Structural determinants of HERG channel block by clofilium and ibutilide. Mol Pharmacol 66:240–249

    Article  PubMed  CAS  Google Scholar 

  8. Kamiya K, Niwa R, Mitcheson JS, Sanguinetti MC (2006) Molecular determinants of HERG channel block. Mol Pharmacol 69:1709–1716

    Article  PubMed  CAS  Google Scholar 

  9. Smith PL, Baukrowitz T, Yellen G (1996) The inward rectification mechanism of the HERG cardiac potassium channel. Nature 379:833–836

    Article  PubMed  CAS  Google Scholar 

  10. Schonherr R, Heinemann SH (1996) Molecular determinants for activation and inactivation of HERG, a human inward rectifier potassium channel. J Physiol (Lond) 493:635–642

    Google Scholar 

  11. Wymore RS, Gintant GA, Wymore RT, Dixon JE, McKinnon D et al (1997) Tissue and species distribution of mRNA for the I Kr-like K+ channel, ERG. Circ Res 80:261–268

    PubMed  CAS  Google Scholar 

  12. Meves H, Schwarz JR, Wulfsen I (1999) Separation of M-like current and ERG current in NG108-15 cells. Br J Pharmacol 127:1213–1223

    Article  PubMed  CAS  Google Scholar 

  13. Selyanko AA, Hadley JK, Wood IC, Abogadie FC, Delmas P et al (1999) Two types of K(+) channel subunit, Erg1 and KCNQ2/3, contribute to the M-like current in a mammalian neuronal cell. J Neurosci 19:7742–7756

    PubMed  CAS  Google Scholar 

  14. Emmi A, Wenzel HJ, Schwartzkroin PA, Taglialatela M, Castaldo P et al (2000) Do glia have heart? Expression and functional role for ether-a-go-go currents in hippocampal astrocytes. J Neurosci 20:3915–3925

    PubMed  CAS  Google Scholar 

  15. Sacco T, Bruno A, Wanke E, Tempia F (2003) Functional roles of an ERG current isolated in cerebellar Purkinje neurons. J Neurophysiol 90:1817–1828

    Article  PubMed  Google Scholar 

  16. Weinsberg F, Bauer CK, Schwarz JR (1997) The class III antiarrhythmic agent E-4031 selectively blocks the inactivating inward-rectifying potassium current in rat anterior pituitary tumor cells (GH3/B6 cells). Pflugers Arch 434:1–10

    Article  PubMed  CAS  Google Scholar 

  17. Barros F, del Camino D, Pardo LA, Palomero T, Giraldez T et al (1997) Demonstration of an inwardly rectifying K+ current component modulated by thyrotropin-releasing hormone and caffeine in GH3 rat anterior pituitary cells. Pflugers Arch 435:119–129

    Article  PubMed  CAS  Google Scholar 

  18. Bauer CK (1998) The erg inwardly rectifying K+ current and its modulation by thyrotrophin-releasing hormone in giant clonal rat anterior pituitary cells. J Physiol 510(Pt 1):63–70

    Article  PubMed  CAS  Google Scholar 

  19. Schledermann W, Wulfsen I, Schwarz JR, Bauer CK (2001) Modulation of rat erg1, erg2, erg3 and HERG K+ currents by thyrotropin-releasing hormone in anterior pituitary cells via the native signal cascade. J Physiol 532:143–163

    Article  PubMed  CAS  Google Scholar 

  20. Gomez-Varela D, Giraldez T, de la Pena P, Dupuy SG, Garcia-Manso D et al (2003) Protein kinase C is necessary for recovery from the thyrotropin-releasing hormone-induced r-ERG current reduction in GH3 rat anterior pituitary cells. J Physiol 547:913–929

    Article  PubMed  CAS  Google Scholar 

  21. Miranda P, Giraldez T, de la Pena P, Manso DG, Alonso-Ron C et al (2005) Specificity of TRH receptor coupling to G-proteins for regulation of ERG K+ channels in GH3 rat anterior pituitary cells. J Physiol 566:717–736

    Article  PubMed  CAS  Google Scholar 

  22. Gullo F, Ales E, Rosati B, Lecchi M, Masi A et al (2003) ERG K+ channel blockade enhances firing and epinephrine secretion in rat chromaffin cells: the missing link to LQT2-related sudden death? FASEB J 17:330–332

    PubMed  CAS  Google Scholar 

  23. Rosati B, Marchetti P, Crociani O, Lecchi M, Lupi R et al (2000) Glucose- and arginine-induced insulin secretion by human pancreatic beta-cells: the role of HERG K(+) channels in firing and release. FASEB J 14:2601–2610

    Article  PubMed  CAS  Google Scholar 

  24. Bianchi L, Wible B, Arcangeli A, Taglialatela M, Morra F et al (1998) HERG encodes a K+ current highly conserved in tumors of different histogenesis: a selective advantage for cancer cells? Cancer Res 58:815–822

    PubMed  CAS  Google Scholar 

  25. Cherubini A, Taddei GL, Crociani O, Paglierani M, Buccoliero AM et al (2000) HERG potassium channels are more frequently expressed in human endometrial cancer as compared to non-cancerous endometrium. Br J Cancer 83:1722–1729

    Article  PubMed  CAS  Google Scholar 

  26. Smith GA, Tsui HW, Newell EW, Jiang X, Zhu XP et al (2002) Functional up-regulation of HERG K+ channels in neoplastic hematopoietic cells. J Biol Chem 277:18528–18534

    Article  PubMed  CAS  Google Scholar 

  27. Pillozzi S, Brizzi MF, Balzi M, Crociani O, Cherubini A et al (2002) HERG potassium channels are constitutively expressed in primary human acute myeloid leukemias and regulate cell proliferation of normal and leukemic hemopoietic progenitors. Leukemia 16:1791–1798

    Article  PubMed  CAS  Google Scholar 

  28. Wang H, Zhang Y, Cao L, Han H, Wang J et al (2002) HERG K+ channel, a regulator of tumor cell apoptosis and proliferation. Cancer Res 62:4843–4848

    PubMed  CAS  Google Scholar 

  29. Lastraioli E, Guasti L, Crociani O, Polvani S, Hofmann G et al (2004) HERG1 gene and HERG1 protein are overexpressed in colorectal cancers and regulate cell invasion of tumor cells. Cancer Res 64:606–611

    Article  PubMed  CAS  Google Scholar 

  30. Cherubini A, Hofmann G, Pillozzi S, Guasti L, Crociani O et al (2005) Human ether-a-go-go-related gene 1 channels are physically linked to beta1 integrins and modulate adhesion-dependent signaling. Mol Biol Cell 16:2972–2983

    Article  PubMed  CAS  Google Scholar 

  31. Fan Z, Makielski JC (1997) Anionic phospholipids activate ATP-sensitive potassium channels. J Biol Chem 272:5388–5395

    Article  PubMed  CAS  Google Scholar 

  32. Shyng SL, Nichols CG (1998) Membrane phospholipid control of nucleotide sensitivity of KATP channels. Science 282:1138–1141

    Article  PubMed  CAS  Google Scholar 

  33. Baukrowitz T, Schulte U, Oliver D, Herlitze S, Krauter T et al (1998) PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science 282:1141–1144

    Article  PubMed  CAS  Google Scholar 

  34. Huang CL, Feng S, Hilgemann DW (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma. Nature 391:803–806

    Article  PubMed  CAS  Google Scholar 

  35. Liou HH, Zhou SS, Huang CL (1999) Regulation of ROMK1 channel by protein kinase A via a phosphatidylinositol 4,5-bisphosphate-dependent mechanism. Proc Natl Acad Sci U S A 96:5820–5825

    Article  PubMed  CAS  Google Scholar 

  36. Rohacs T, Chen J, Prestwich GD, Logothetis DE (1999) Distinct specificities of inwardly rectifying K(+) channels for phosphoinositides. J Biol Chem 274:36065–36072

    Article  PubMed  CAS  Google Scholar 

  37. Xie LH, Horie M, Takano M (1999) Phospholipase C-linked receptors regulate the ATP-sensitive potassium channel by means of phosphatidylinositol 4,5-bisphosphate metabolism. Proc Natl Acad Sci U S A 96:15292–15297

    Article  PubMed  CAS  Google Scholar 

  38. Zhang H, He C, Yan X, Mirshahi T, Logothetis DE (1999) Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions. Nat Cell Biol 1:183–188

    Article  PubMed  CAS  Google Scholar 

  39. Bian J, Cui J, McDonald TV (2001) HERG K(+) channel activity is regulated by changes in phosphatidyl inositol 4,5-bisphosphate. Circ Res 89:1168–1176

    PubMed  CAS  Google Scholar 

  40. Bian JS, Kagan A, McDonald TV (2004) Molecular analysis of PIP2 regulation of HERG and I Kr. Am J Physiol Heart Circ Physiol 287:H2154–H2163

    Article  PubMed  CAS  Google Scholar 

  41. Heo WD, Inoue T, Park WS, Kim ML, Park BO et al (2006) PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science 314:1458–1461

    Article  PubMed  CAS  Google Scholar 

  42. Soom M, Schonherr R, Kubo Y, Kirsch C, Klinger R et al (2001) Multiple PIP2 binding sites in Kir2.1 inwardly rectifying potassium channels. FEBS Lett 490:49–53

    Article  PubMed  CAS  Google Scholar 

  43. Zagotta WN, Olivier NB, Black KD, Young EC, Olson R et al (2003) Structural basis for modulation and agonist specificity of HCN pacemaker channels. Nature 425:200–205

    Article  PubMed  CAS  Google Scholar 

  44. Barros F, Gomez-Varela D, Viloria CG, Palomero T, Giraldez T et al (1998) Modulation of human erg K+ channel gating by activation of a G protein-coupled receptor and protein kinase C. J Physiol 511(Pt 2):333–346

    Article  PubMed  CAS  Google Scholar 

  45. Hirdes W, Horowitz LF, Hille B (2004) Muscarinic modulation of erg potassium current. J Physiol 559:67–84

    Article  PubMed  CAS  Google Scholar 

  46. Shi H, Wang H, Wang Z (1999) Identification and characterization of multiple subtypes of muscarinic acetylcholine receptors and their physiological functions in canine hearts. Mol Pharmacol 55:497–507

    PubMed  CAS  Google Scholar 

  47. Cockerill SL, Tobin AB, Torrecilla I, Willars GB, Standen NB et al (2007) Modulation of hERG potassium currents in HEK-293 cells by protein kinase C. Evidence for direct phosphorylation of pore forming subunits. J Physiol 581(2):479–493

    Article  PubMed  CAS  Google Scholar 

  48. Kiehn J, Karle C, Thomas D, Yao X, Brachmann J et al (1998) HERG potassium channel activation is shifted by phorbol esters via protein kinase A-dependent pathways. J Biol Chem 273:25285–25291

    Article  PubMed  CAS  Google Scholar 

  49. Thomas D, Zhang W, Karle CA, Kathofer S, Schols W et al (1999) Deletion of protein kinase A phosphorylation sites in the HERG potassium channel inhibits activation shift by protein kinase A. J Biol Chem 274:27457–27462

    Article  PubMed  CAS  Google Scholar 

  50. Cui J, Melman Y, Palma E, Fishman GI, McDonald TV (2000) Cyclic AMP regulates the HERG K(+) channel by dual pathways. Curr Biol 10:671–674

    Article  PubMed  CAS  Google Scholar 

  51. Cui J, Kagan A, Qin D, Mathew J, Melman YF et al (2001) Analysis of the cyclic nucleotide binding domain of the HERG potassium channel and interactions with KCNE2. J Biol Chem 276:17244–17251

    Article  PubMed  CAS  Google Scholar 

  52. Schwartz PJ, Priori SG, Spazzolini C, Moss AJ, Vincent GM et al (2001) Genotype–phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation 103:89–95

    PubMed  CAS  Google Scholar 

  53. Sun ZH, Swan H, Viitasalo M, Toivonen L (1998) Effects of epinephrine and phenylephrine on QT interval dispersion in congenital long QT syndrome. J Am Coll Cardiol 31:1400–1405

    Article  PubMed  CAS  Google Scholar 

  54. Furushima H, Chinushi M, Washizuka T, Aizawa Y (2001) Role of alpha1-blockade in congenital long QT syndrome: investigation by exercise stress test. Jpn Circ J 65:654–658

    Article  PubMed  CAS  Google Scholar 

  55. Kurz T, Yamada KA, DaTorre SD, Corr PB (1991) Alpha 1-adrenergic system and arrhythmias in ischaemic heart disease. Eur Heart J 12(Suppl F):88–98

    PubMed  Google Scholar 

  56. Thomas D, Hammerling BC, Wimmer AB, Wu K, Ficker E et al (2004) Direct block of hERG potassium channels by the protein kinase C inhibitor bisindolylmaleimide I (GF109203X). Cardiovasc Res 64:467–476

    Article  PubMed  CAS  Google Scholar 

  57. Suh BC, Inoue T, Meyer T, Hille B (2006) Rapid chemically induced changes of PtdIns(4,5)P2 gate KCNQ ion channels. Science 314:1454–1457

    Article  PubMed  CAS  Google Scholar 

  58. Suh BC, Horowitz LF, Hirdes W, Mackie K, Hille B (2004) Regulation of KCNQ2/KCNQ3 current by G protein cycling: the kinetics of receptor-mediated signaling by Gq. J Gen Physiol 123:663–683

    Article  PubMed  CAS  Google Scholar 

  59. Wang J, Wang H, Han H, Zhang Y, Yang B et al (2001) Phospholipid metabolite 1-palmitoyl-lysophosphatidylcholine enhances human ether-a-go-go-related gene (HERG) K(+) channel function. Circulation 104:2645–2648

    PubMed  CAS  Google Scholar 

  60. Wang J, Zhang Y, Wang H, Han H, Nattel S et al (2004) Potential mechanisms for the enhancement of HERG K+ channel function by phospholipid metabolites. Br J Pharmacol 141:586–599

    Article  PubMed  CAS  Google Scholar 

  61. Thomas D, Zhang W, Wu K, Wimmer AB, Gut B et al (2003) Regulation of HERG potassium channel activation by protein kinase C independent of direct phosphorylation of the channel protein. Cardiovasc Res 59:14–26

    Article  PubMed  CAS  Google Scholar 

  62. Du X, Zhang H, Lopes C, Mirshahi T, Rohacs T et al (2004) Characteristic interactions with phosphatidylinositol 4,5-bisphosphate determine regulation of kir channels by diverse modulators. J Biol Chem 279:37271–37281

    Article  PubMed  CAS  Google Scholar 

  63. Zerangue N, Malan MJ, Fried SR, Dazin PF, Jan YN et al (2001) Analysis of endoplasmic reticulum trafficking signals by combinatorial screening in mammalian cells. Proc Natl Acad Sci U S A 98:2431–2436

    Article  PubMed  CAS  Google Scholar 

  64. Michelsen K, Yuan H, Schwappach B (2005) Hide and run. Arginine-based endoplasmic-reticulum-sorting motifs in the assembly of heteromultimeric membrane proteins. EMBO Rep 6:717–722

    Article  PubMed  CAS  Google Scholar 

  65. Kagan A, Melman YF, Krumerman A, McDonald TV (2002) 14-3-3 Amplifies and prolongs adrenergic stimulation of HERG K+ channel activity. EMBO J 21:1889–1898

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NHLBI and AHA to TVM and from the Singapore Biomedical Research Council to J-SB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas V. McDonald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bian, JS., McDonald, T.V. Phosphatidylinositol 4,5-bisphosphate interactions with the HERG K+ channel. Pflugers Arch - Eur J Physiol 455, 105–113 (2007). https://doi.org/10.1007/s00424-007-0292-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0292-5

Keywords

Navigation