Skip to main content
Log in

The lipid connection–regulation of voltage-gated Ca2+ channels by phosphoinositides

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Recent findings have revealed a pivotal role for phospholipids phosphatidylinositol -4,5-biphosphate (PIP2) and phosphatidylinositol -3,4,5-trisphosphate (PIP3) in the regulation of high voltage-activated (HVA) Ca2+ channels. PIP2 exerts two opposing actions on HVA Ca2+ channels: It stabilizes their activity but also produces a voltage-dependent inhibition that can be antagonized by protein kinase A (PKA) phosphorylation. PIP2 depletion and arachidonic acid together mediate the slow, voltage-independent inhibition of HVA Ca2+ channels by G q/11 -coupled receptors in neurons. A sufficient level of plasma membrane PIP2 also appears to be necessary for G βγ -mediated inhibition. On the other hand, increased production of PIP3 by PI-3 kinases promotes trafficking of HVA Ca2+ channels to the plasma membrane. This review discusses these findings and their implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barrett CF, Liu L, Rittenhouse AR (2001) Arachidonic acid reversibly enhances N-type calcium current at an extracellular site. Am J Physiol Cell Physiol 280:C1306–C1318

    PubMed  CAS  Google Scholar 

  2. Bean BP (1989) Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence. Nature 340:153–156

    Article  PubMed  CAS  Google Scholar 

  3. Bean BP, Nowycky MC, Tsien RW (1984) Beta-adrenergic modulation of calcium channels in frog ventricular heart cells. Nature 307:371–375

    Article  PubMed  CAS  Google Scholar 

  4. Blair LA, Marshall J (1997) IGF-1 modulates N and L calcium channels in a PI 3-kinase-dependent manner. Neuron 19:421–429

    Article  PubMed  CAS  Google Scholar 

  5. Boland LM, Bean BP (1993) Modulation of N-type calcium channels in bullfrog sympathetic neurons by luteinizing hormone-releasing hormone: kinetics and voltage dependence. J Neurosci 13:516–533

    PubMed  CAS  Google Scholar 

  6. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657

    Article  PubMed  CAS  Google Scholar 

  7. Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555

    Article  PubMed  CAS  Google Scholar 

  8. Cremona O, De Camilli P (2001) Phosphoinositides in membrane traffic at the synapse. J Cell Sci 114:1041–1052

    PubMed  CAS  Google Scholar 

  9. Cullen PJ, Cozier GE, Banting G, Mellor H (2001) Modular phosphoinositide-binding domains—their role in signalling and membrane trafficking. Curr Biol 11:R882–R893

    Article  PubMed  CAS  Google Scholar 

  10. Delmas P, Brown DA (2005) Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci 6:850–862

    Article  PubMed  CAS  Google Scholar 

  11. Delmas P, Coste B, Gamper N, Shapiro MS (2005) Phosphoinositide lipid second messengers: new paradigms for calcium channel modulation. Neuron 47:179–182

    Article  PubMed  CAS  Google Scholar 

  12. Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657

    Article  PubMed  CAS  Google Scholar 

  13. Di Paolo G, Moskowitz HS, Gipson K, Wenk MR, Voronov S, Obayashi M, Flavell R, Fitzsimonds RM, Ryan TA, De Camilli P (2004) Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 431:415–422

    Article  PubMed  CAS  Google Scholar 

  14. Dolphin AC (2003) G protein modulation of voltage-gated calcium channels. Pharmacol Rev 55:607–627

    Article  PubMed  CAS  Google Scholar 

  15. Du X, Zhang H, Lopes C, Mirshahi T, Rohacs T, Logothetis DE (2004) Characteristic interactions with phosphatidylinositol 4,5-bisphosphate determine regulation of Kir channels by diverse modulators. J Biol Chem 279:37271–37281

    Article  PubMed  CAS  Google Scholar 

  16. Franke TF, Kaplan DR, Cantley LC, Toker A (1997) Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275:665–668

    Article  PubMed  CAS  Google Scholar 

  17. Gamper N, Reznikov V, Yamada Y, Yang J, Shapiro MS (2004) Phosphatidylinositol [correction] 4,5-bisphosphate signals underlie receptor-specific Gq/11-mediated modulation of N-type Ca2+ channels. J Neurosci 24:10980–10992

    Article  PubMed  CAS  Google Scholar 

  18. Hilgemann DW, Ball R (1996) Regulation of cardiac Na+,Ca2+ exchange and KATP potassium channels by PIP2. Science 273:956–959

    Article  PubMed  CAS  Google Scholar 

  19. Hille B (1994) Modulation of ion-channel function by G-protein-coupled receptors. Trends Neurosci 17:531–536

    Article  PubMed  CAS  Google Scholar 

  20. Huang CL, Feng S, Hilgemann DW (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma. Nature 391:803–806

    Article  PubMed  CAS  Google Scholar 

  21. Ikeda SR, Dunlap K (1999) Voltage-dependent modulation of N-type calcium channels: role of G protein subunits. Adv Second Messenger Phosphoprot Res 33:131–151

    CAS  Google Scholar 

  22. Kamp F, Hamilton JA, Kamp F, Westerhoff HV, Hamilton JA (1993) Movement of fatty acids, fatty acid analogues, and bile acids across phospholipid bilayers. Biochemistry 32:11074–11086

    Article  PubMed  CAS  Google Scholar 

  23. Kamp TJ, Hell JW (2000) Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ Res 87:1095–1102

    PubMed  CAS  Google Scholar 

  24. Koizumi S, Rosa P, Willars GB, Challiss RA, Taverna E, Francolini M, Bootman MD, Lipp P, Inoue K, Roder J, Jeromin A (2002) Mechanisms underlying the neuronal calcium sensor-1-evoked enhancement of exocytosis in PC12 cells. J Biol Chem 277:30315–30324

    Article  PubMed  CAS  Google Scholar 

  25. Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe ED, Zimmer J, Cuthbertson J, Ashcroft FM, Ezaki T, Doyle DA (2003) Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300:1922–1926

    Article  PubMed  CAS  Google Scholar 

  26. Lechner SG, Hussl S, Schicker KW, Drobny H, Boehm S (2005) Presynaptic inhibition via a phospholipase C- and phosphatidylinositol bisphosphate-dependent regulation of neuronal Ca2+ channels. Mol Pharmacol 68:1387–1396

    Article  PubMed  CAS  Google Scholar 

  27. Lemmon MA (2003) Phosphoinositide recognition domains. Traffic 4:201–213

    Article  PubMed  CAS  Google Scholar 

  28. Liu L, Barrett CF, Rittenhouse AR (2001) Arachidonic acid both inhibits and enhances whole cell calcium currents in rat sympathetic neurons. Am J Physiol Cell Physiol 280:C1293–C1305

    PubMed  CAS  Google Scholar 

  29. Liu L, Rittenhouse AR (2003) Arachidonic acid mediates muscarinic inhibition and enhancement of N-type Ca2+ current in sympathetic neurons. Proc Natl Acad Sci USA 100:295–300

    Article  PubMed  CAS  Google Scholar 

  30. Liu L, Roberts ML, Rittenhouse AR (2004) Phospholipid metabolism is required for M1 muscarinic inhibition of N-type calcium current in sympathetic neurons. Eur Biophys J 33:255–264

    Article  PubMed  CAS  Google Scholar 

  31. Liu L, Zhao R, Bai Y, Stanish LF, Evans JE, Sanderson MJ, Bonventre JV, Rittenhouse AR (2006) M1 muscarinic receptors inhibit L-type Ca2+ current and M-current by divergent signal transduction cascades. J Neurosci 26:11588–11598

    Article  PubMed  CAS  Google Scholar 

  32. Lopes CM, Zhang H, Rohacs T, Jin T, Yang J, Logothetis DE (2002) Alterations in conserved Kir channel-PIP2 interactions underlie channelopathies. Neuron 34:933–944

    Article  PubMed  CAS  Google Scholar 

  33. McDonald TF, Pelzer S, Trautwein W, Pelzer DJ (1994) Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev 74:365–507

    PubMed  CAS  Google Scholar 

  34. McLaughlin S, Wang J, Gambhir A, Murray D (2002) PIP(2) and proteins: interactions, organization, and information flow. Annu Rev Biophys Biomol Struct 31:151–175

    Article  PubMed  CAS  Google Scholar 

  35. McPherson PS, Garcia EP, Slepnev VI, David C, Zhang X, Grabs D, Sossin WS, Bauerfeind R, Nemoto Y, De Camilli P (1996) A presynaptic inositol-5-phosphatase. Nature 379:353–357

    Article  PubMed  CAS  Google Scholar 

  36. Meves H (1994) Modulation of ion channels by arachidonic acid. Prog Neurobiol 43:175–186

    Article  PubMed  CAS  Google Scholar 

  37. Nishida M, MacKinnon R (2002) Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 A resolution. Cell 111:957–965

    Article  PubMed  CAS  Google Scholar 

  38. Raucher D, Stauffer T, Chen W, Shen K, Guo S, York JD, Sheetz MP, Meyer T (2000) Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell 100:221–228

    Article  PubMed  CAS  Google Scholar 

  39. Rhee SG (2001) Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 70:281–312

    Article  PubMed  CAS  Google Scholar 

  40. Roche JP, Treistman SN (1998) Ca2+ channel beta3 subunit enhances voltage-dependent relief of G-protein inhibition induced by muscarinic receptor activation and Gbetagamma. J Neurosci 18:4883–4890

    PubMed  CAS  Google Scholar 

  41. Rousset M, Cens T, Gouin-Charnet A, Scamps F, Charnet P (2004) Ca2+ and phosphatidylinositol 4,5-bisphosphate stabilize a Gbeta gamma-sensitive state of Ca V2 Ca 2+ channels. J Biol Chem 279:14619–14630

    Article  PubMed  CAS  Google Scholar 

  42. Shyng SL, Cukras CA, Harwood J, Nichols CG (2000) Structural determinants of PIP(2) regulation of inward rectifier K(ATP) channels. J Gen Physiol 116:599–608

    Article  PubMed  CAS  Google Scholar 

  43. Stolz LE, Kuo WJ, Longchamps J, Sekhon MK, York JD (1998) INP51, a yeast inositol polyphosphate 5-phosphatase required for phosphatidylinositol 4,5-bisphosphate homeostasis and whose absence confers a cold-resistant phenotype. J Biol Chem 273:11852–11861

    Article  PubMed  CAS  Google Scholar 

  44. Suh BC, Hille B (2002) Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4,5-bisphosphate synthesis. Neuron 35:507–520

    Article  PubMed  CAS  Google Scholar 

  45. Suh BC, Inoue T, Meyer T, Hille B (2006) Rapid chemically induced changes of PtdIns(4,5)P2 gate KCNQ ion channels. Science 314:1454–1457

    Article  PubMed  CAS  Google Scholar 

  46. Sui JL, Petit-Jacques J, Logothetis DE (1998) Activation of the atrial KACh channel by the betagamma subunits of G proteins or intracellular Na+ ions depends on the presence of phosphatidylinositol phosphates. Proc Natl Acad Sci USA 95:1307–1312

    Article  PubMed  CAS  Google Scholar 

  47. Toker A (1998) The synthesis and cellular roles of phosphatidylinositol 4,5-bisphosphate. Curr Opin Cell Biol 10:254–261

    Article  PubMed  CAS  Google Scholar 

  48. Viard P, Butcher AJ, Halet G, Davies A, Nurnberg B, Heblich F, Dolphin AC (2004) PI3K promotes voltage-dependent calcium channel trafficking to the plasma membrane. Nat Neurosci 7:939–946

    Article  PubMed  CAS  Google Scholar 

  49. Wenk MR, Pellegrini L, Klenchin VA, Di Paolo G, Chang S, Daniell L, Arioka M, Martin TF, De Camilli P (2001) PIP kinase Igamma is the major PI(4,5)P(2) synthesizing enzyme at the synapse. Neuron 32:79–88

    Article  PubMed  CAS  Google Scholar 

  50. Wu L, Bauer CS, Zhen XG, Xie C, Yang J (2002) Dual regulation of voltage-gated calcium channels by PtdIns(4,5)P2. Nature 419:947–952

    Article  PubMed  CAS  Google Scholar 

  51. Zhang H, Craciun LC, Mirshahi T, Rohacs T, Lopes CM, Jin T, Logothetis DE (2003) PIP(2) activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron 37:963–975

    Article  PubMed  CAS  Google Scholar 

  52. Zhao X, Varnai P, Tuymetova G, Balla A, Toth ZE, Oker-Blom C, Roder J, Jeromin A, Balla T (2001) Interaction of neuronal calcium sensor-1 (NCS-1) with phosphatidylinositol 4-kinase beta stimulates lipid kinase activity and affects membrane trafficking in COS-7 cells. J Biol Chem 276:40183–40189

    PubMed  CAS  Google Scholar 

  53. Zhen XG, Xie C, Yamada Y, Zhang Y, Doyle C, Yang J (2006) A single amino acid mutation attenuates rundown of voltage-gated calcium channels. FEBS Lett 580:5733–5738

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michailidis, I.E., Zhang, Y. & Yang, J. The lipid connection–regulation of voltage-gated Ca2+ channels by phosphoinositides. Pflugers Arch - Eur J Physiol 455, 147–155 (2007). https://doi.org/10.1007/s00424-007-0272-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0272-9

Keywords

Navigation