Skip to main content

Advertisement

Log in

Towards standardized robotic surgery in gastrointestinal oncology

  • REVIEW ARTICLE
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Purpose

Minimally invasive techniques have revolutionized the field of surgery over the past several decades. Specifically, robotic surgery is increasingly being used for complex operations, although the appreciable learning curve required to become proficient has deterred many surgeons. We describe how use of a proficiency-based training program can decrease the learning curve and lead to standardized robotic surgery.

Methods

The steps of a proficiency-based robotic training program are described, including (1) a proficiency-based virtual reality simulation curriculum, (2) an inanimate biotissue curriculum, (3) a video library training, (4) intraoperative evaluation, and (5) skill maintenance with ongoing assessment. The learning curve for robotic gastrointestinal surgery is explored, as well as outcomes compared to laparoscopic and open techniques.

Results

The implementation of a proficiency-based robotic training program is feasible. Surgical oncology fellows who participated in the program demonstrated improvement in both the simulation and biotissue curricula. Analyzed as a group, the participants improved in time and errors after the biotissue curriculum.

Conclusions

Published outcomes from robotic gastrointestinal surgery have demonstrated safety, feasibility, and preserved oncologic resections. A proficiency-based robotic curriculum is ideal to enable surgeons to achieve mastery in robotic surgery while minimizing the learning curve required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Semm K (1988) Pelviscopic appendectomy. Dtsch Med Wochenschr 113(1):3–5. https://doi.org/10.1055/s-2008-1067581

    Article  CAS  PubMed  Google Scholar 

  2. Reynolds W Jr (2001) The first laparoscopic cholecystectomy. JSLS 5(1):89–94

    PubMed  PubMed Central  Google Scholar 

  3. Franklin ME Jr, Rosenthal D, Abrego-Medina D, Dorman JP, Glass JL, Norem R, Diaz A (1996) Prospective comparison of open vs. laparoscopic colon surgery for carcinoma. Five-year results. Dis Colon Rectum 39(10 Suppl):S35–S46

    Article  PubMed  Google Scholar 

  4. Shaligram A, Unnirevi J, Simorov A, Kothari VM, Oleynikov D (2012) How does the robot affect outcomes? A retrospective review of open, laparoscopic, and robotic Heller myotomy for achalasia. Surg Endosc 26(4):1047–1050. https://doi.org/10.1007/s00464-011-1994-5

    Article  PubMed  Google Scholar 

  5. Zureikat AH, Postlewait LM, Liu Y, Gillespie TW, Weber SM, Abbott DE, Ahmad SA, Maithel SK, Hogg ME, Zenati M, Cho CS, Salem A, Xia B, Steve J, Nguyen TK, Keshava HB, Chalikonda S, Walsh RM, Talamonti MS, Stocker SJ, Bentrem DJ, Lumpkin S, Kim HJ, Zeh HJ 3rd, Kooby DA (2016) A multi-institutional comparison of perioperative outcomes of robotic and open pancreaticoduodenectomy. Ann Surg 264(4):640–649. https://doi.org/10.1097/SLA.0000000000001869

    Article  PubMed  Google Scholar 

  6. McCormack K, Scott NW, Go PM, Ross S, Grant AM, Collaboration EUHT (2003) Laparoscopic techniques versus open techniques for inguinal hernia repair. Cochrane Database Syst Rev 1:CD001785. https://doi.org/10.1002/14651858.CD001785

    Google Scholar 

  7. Gagner M, Pomp A (1994) Laparoscopic pylorus-preserving pancreatoduodenectomy. Surg Endosc 8(5):408–410

    Article  CAS  PubMed  Google Scholar 

  8. Cuschieri A (1994) Laparoscopic surgery of the pancreas. J R Coll Surg Edinb 39(3):178–184

    CAS  PubMed  Google Scholar 

  9. https://www.intuitivesurgical.com/company/faqs.html. Accessed July 21, 2017 2017

  10. Melvin WS, Needleman BJ, Krause KR, Ellison EC (2003) Robotic resection of pancreatic neuroendocrine tumor. J Laparoendosc Adv Surg Tech A 13(1):33–36. https://doi.org/10.1089/109264203321235449

    Article  CAS  PubMed  Google Scholar 

  11. Giulianotti PC, Coratti A, Angelini M, Sbrana F, Cecconi S, Balestracci T, Caravaglios G (2003) Robotics in general surgery: personal experience in a large community hospital. Arch Surg 138(7):777–784. https://doi.org/10.1001/archsurg.138.7.777

    Article  PubMed  Google Scholar 

  12. Hashizume M, Sugimachi K (2003) Robot-assisted gastric surgery. Surg Clin North Am 83(6):1429–1444. https://doi.org/10.1016/S0039-6109(03)00158-0

    Article  PubMed  Google Scholar 

  13. Cuschieri A (2005) Reducing errors in the operating room: surgical proficiency and quality assurance of execution. Surg Endosc 19(8):1022–1027. https://doi.org/10.1007/s00464-005-8110-7

    Article  CAS  PubMed  Google Scholar 

  14. Smith R, Patel V, Satava R (2014) Fundamentals of robotic surgery: a course of basic robotic surgery skills based upon a 14-society consensus template of outcomes measures and curriculum development. Int J Med Rob 10(3):379–384. https://doi.org/10.1002/rcs.1559

    Article  Google Scholar 

  15. Ahmed K, Khan R, Mottrie A, Lovegrove C, Abaza R, Ahlawat R, Ahlering T, Ahlgren G, Artibani W, Barret E, Cathelineau X, Challacombe B, Coloby P, Khan MS, Hubert J, Michel MS, Montorsi F, Murphy D, Palou J, Patel V, Piechaud PT, Van Poppel H, Rischmann P, Sanchez-Salas R, Siemer S, Stoeckle M, Stolzenburg JU, Terrier JE, Thuroff JW, Vaessen C, Van Der Poel HG, Van Cleynenbreugel B, Volpe A, Wagner C, Wiklund P, Wilson T, Wirth M, Witt J, Dasgupta P (2015) Development of a standardised training curriculum for robotic surgery: a consensus statement from an international multidisciplinary group of experts. BJU Int 116(1):93–101. https://doi.org/10.1111/bju.12974

    Article  PubMed  Google Scholar 

  16. Hogg ME, Besselink MG, Clavien PA, Fingerhut A, Jeyarajah DR, Kooby DA, Moser AJ, Pitt HA, Varban OA, Vollmer CM, Zeh HJ 3rd, Hansen P, Minimally Invasive Pancreatic Resection Organizing C (2017) Training in minimally invasive pancreatic resections: a paradigm shift away from “See one, Do one, Teach one”. HPB 19(3):234–245. https://doi.org/10.1016/j.hpb.2017.01.016

    Article  PubMed  Google Scholar 

  17. Abboudi H, Khan MS, Aboumarzouk O, Guru KA, Challacombe B, Dasgupta P, Ahmed K (2013) Current status of validation for robotic surgery simulators—a systematic review. BJU Int 111(2):194–205. https://doi.org/10.1111/j.1464-410X.2012.11270.x

    Article  PubMed  Google Scholar 

  18. Hogg ME, Tam V, Zenati M, Novak S, Miller J, Zureikat AH, Zeh HJ 3rd (2017) Mastery-based virtual reality robotic simulation curriculum: the first step toward operative robotic proficiency. J Surg Educ 74(3):477–485. https://doi.org/10.1016/j.jsurg.2016.10.015

    Article  PubMed  Google Scholar 

  19. Birkmeyer JD, Finks JF, O'Reilly A, Oerline M, Carlin AM, Nunn AR, Dimick J, Banerjee M, Birkmeyer NJ, Michigan Bariatric Surgery C (2013) Surgical skill and complication rates after bariatric surgery. N Engl J Med 369(15):1434–1442. https://doi.org/10.1056/NEJMsa1300625

    Article  CAS  PubMed  Google Scholar 

  20. Tam V, Zenati M, Novak S, Chen Y, Zureikat AH, Zeh HJ 3rd, Hogg ME (2017) Robotic pancreatoduodenectomy biotissue curriculum has validity and improves technical performance for surgical oncology fellows. J Surg Educ. https://doi.org/10.1016/j.jsurg.2017.05.016

  21. King JC, Zeh HJ 3rd, Zureikat AH, Celebrezze J, Holtzman MP, Stang ML, Tsung A, Bartlett DL, Hogg ME (2016) Safety in numbers: progressive implementation of a robotics program in an academic surgical oncology practice. Surg Innov 23(4):407–414. https://doi.org/10.1177/1553350616646479

    Article  PubMed  Google Scholar 

  22. Hogg ME, Zenati M, Novak S, Chen Y, Jun Y, Steve J, Kowalsky SJ, Bartlett DL, Zureikat AH, Zeh HJ 3rd (2016) Grading of surgeon technical performance predicts postoperative pancreatic fistula for pancreaticoduodenectomy independent of patient-related variables. Ann Surg 264(3):482–491. https://doi.org/10.1097/SLA.0000000000001862

    Article  PubMed  Google Scholar 

  23. Gallagher AG, Seymour NE, Jordan-Black JA, Bunting BP, McGlade K, Satava RM (2013) Prospective, randomized assessment of transfer of training (ToT) and transfer effectiveness ratio (TER) of virtual reality simulation training for laparoscopic skill acquisition. Ann Surg 257(6):1025–1031. https://doi.org/10.1097/SLA.0b013e318284f658

    Article  PubMed  Google Scholar 

  24. Satava RM (2009) The revolution in medical education—the role of simulation. J Grad Med Educ 1(2):172–175. https://doi.org/10.4300/JGME-D-09-00075.1

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lendvay TS, Brand TC, White L, Kowalewski T, Jonnadula S, Mercer LD, Khorsand D, Andros J, Hannaford B, Satava RM (2013) Virtual reality robotic surgery warm-up improves task performance in a dry laboratory environment: a prospective randomized controlled study. J Am Coll Surg 216(6):1181–1192. https://doi.org/10.1016/j.jamcollsurg.2013.02.012

    Article  PubMed  PubMed Central  Google Scholar 

  26. Birkmeyer JD, Stukel TA, Siewers AE, Goodney PP, Wennberg DE, Lucas FL (2003) Surgeon volume and operative mortality in the United States. N Engl J Med 349(22):2117–2127. https://doi.org/10.1056/NEJMsa035205

    Article  CAS  PubMed  Google Scholar 

  27. Tseng JF, Pisters PW, Lee JE, Wang H, Gomez HF, Sun CC, Evans DB (2007) The learning curve in pancreatic surgery. Surgery 141(4):456–463. https://doi.org/10.1016/j.surg.2006.09.013

    Article  PubMed  Google Scholar 

  28. Fisher WE, Hodges SE, Wu MF, Hilsenbeck SG, Brunicardi FC (2012) Assessment of the learning curve for pancreaticoduodenectomy. Am J Surg 203(6):684–690. https://doi.org/10.1016/j.amjsurg.2011.05.006

    Article  PubMed  Google Scholar 

  29. Schmidt CM, Turrini O, Parikh P, House MG, Zyromski NJ, Nakeeb A, Howard TJ, Pitt HA, Lillemoe KD (2010) Effect of hospital volume, surgeon experience, and surgeon volume on patient outcomes after pancreaticoduodenectomy: a single-institution experience. Arch Surg 145(7):634–640. https://doi.org/10.1001/archsurg.2010.118

    Article  PubMed  Google Scholar 

  30. Napoli N, Kauffmann EF, Perrone VG, Miccoli M, Brozzetti S, Boggi U (2015) The learning curve in robotic distal pancreatectomy. Updat Surg 67(3):257–264. https://doi.org/10.1007/s13304-015-0299-y

    Article  Google Scholar 

  31. Shakir M, Boone BA, Polanco PM, Zenati MS, Hogg ME, Tsung A, Choudry HA, Moser AJ, Bartlett DL, Zeh HJ, Zureikat AH (2015) The learning curve for robotic distal pancreatectomy: an analysis of outcomes of the first 100 consecutive cases at a high-volume pancreatic centre. HPB 17(7):580–586. https://doi.org/10.1111/hpb.12412

    Article  PubMed  PubMed Central  Google Scholar 

  32. Boone BA, Zenati M, Hogg ME, Steve J, Moser AJ, Bartlett DL, Zeh HJ, Zureikat AH (2015) Assessment of quality outcomes for robotic pancreaticoduodenectomy: identification of the learning curve. JAMA Surg 150(5):416–422. https://doi.org/10.1001/jamasurg.2015.17

    Article  PubMed  Google Scholar 

  33. Chen S, Chen JZ, Zhan Q, Deng XX, Shen BY, Peng CH, Li HW (2015) Robot-assisted laparoscopic versus open pancreaticoduodenectomy: a prospective, matched, mid-term follow-up study. Surg Endosc 29(12):3698–3711. https://doi.org/10.1007/s00464-015-4140-y

    Article  PubMed  Google Scholar 

  34. Napoli N, Kauffmann EF, Palmeri M, Miccoli M, Costa F, Vistoli F, Amorese G, Boggi U (2016) The learning curve in robotic pancreaticoduodenectomy. Dig Surg 33(4):299–307. https://doi.org/10.1159/000445015

    Article  CAS  PubMed  Google Scholar 

  35. Kang BH, Xuan Y, Hur H, Ahn CW, Cho YK, Han SU (2012) Comparison of surgical outcomes between robotic and laparoscopic gastrectomy for gastric cancer: the learning curve of robotic surgery. J Gastric Cancer 12(3):156–163. https://doi.org/10.5230/jgc.2012.12.3.156

    Article  PubMed  PubMed Central  Google Scholar 

  36. Park SS, Kim MC, Park MS, Hyung WJ (2012) Rapid adaptation of robotic gastrectomy for gastric cancer by experienced laparoscopic surgeons. Surg Endosc 26(1):60–67. https://doi.org/10.1007/s00464-011-1828-5

    Article  PubMed  Google Scholar 

  37. Zhou J, Shi Y, Qian F, Tang B, Hao Y, Zhao Y, Yu P (2015) Cumulative summation analysis of learning curve for robot-assisted gastrectomy in gastric cancer. J Surg Oncol 111(6):760–767. https://doi.org/10.1002/jso.23876

    Article  PubMed  Google Scholar 

  38. Sng KK, Hara M, Shin JW, Yoo BE, Yang KS, Kim SH (2013) The multiphasic learning curve for robot-assisted rectal surgery. Surg Endosc 27(9):3297–3307. https://doi.org/10.1007/s00464-013-2909-4

    Article  PubMed  Google Scholar 

  39. Jimenez-Rodriguez RM, Diaz-Pavon JM, de la Portilla de Juan F, Prendes-Sillero E, Dussort HC, Padillo J (2013) Learning curve for robotic-assisted laparoscopic rectal cancer surgery. Int J Color Dis 28(6):815–821. https://doi.org/10.1007/s00384-012-1620-6

    Article  Google Scholar 

  40. Kim HJ, Choi GS, Park JS, Park SY (2014) Multidimensional analysis of the learning curve for robotic total mesorectal excision for rectal cancer: lessons from a single surgeon's experience. Dis Colon Rectum 57(9):1066–1074. https://doi.org/10.1097/DCR.0000000000000174

    Article  PubMed  Google Scholar 

  41. Melich G, Hong YK, Kim J, Hur H, Baik SH, Kim NK, Sender Liberman A, Min BS (2015) Simultaneous development of laparoscopy and robotics provides acceptable perioperative outcomes and shows robotics to have a faster learning curve and to be overall faster in rectal cancer surgery: analysis of novice MIS surgeon learning curves. Surg Endosc 29(3):558–568. https://doi.org/10.1007/s00464-014-3698-0

    Article  PubMed  Google Scholar 

  42. Park EJ, Kim CW, Cho MS, Kim DW, Min BS, Baik SH, Lee KY, Kim NK (2014) Is the learning curve of robotic low anterior resection shorter than laparoscopic low anterior resection for rectal cancer? A comparative analysis of clinicopathologic outcomes between robotic and laparoscopic surgeries. Medicine 93(25):e109. https://doi.org/10.1097/MD.0000000000000109

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yamaguchi T, Kinugasa Y, Shiomi A, Sato S, Yamakawa Y, Kagawa H, Tomioka H, Mori K (2015) Learning curve for robotic-assisted surgery for rectal cancer: use of the cumulative sum method. Surg Endosc 29(7):1679–1685. https://doi.org/10.1007/s00464-014-3855-5

    Article  PubMed  Google Scholar 

  44. Foo CC, Law WL (2016) The learning curve of robotic-assisted low rectal resection of a novice rectal surgeon. World J Surg 40(2):456–462. https://doi.org/10.1007/s00268-015-3251-x

    Article  PubMed  Google Scholar 

  45. Chen PD, Wu CY, Hu RH, Chen CN, Yuan RH, Liang JT, Lai HS, Wu YM (2017) Robotic major hepatectomy: is there a learning curve? Surgery 161(3):642–649. https://doi.org/10.1016/j.surg.2016.09.025

    Article  PubMed  Google Scholar 

  46. Song J, Kang WH, Oh SJ, Hyung WJ, Choi SH, Noh SH (2009) Role of robotic gastrectomy using da Vinci system compared with laparoscopic gastrectomy: initial experience of 20 consecutive cases. Surg Endosc 23(6):1204–1211. https://doi.org/10.1007/s00464-009-0351-4

    Article  PubMed  Google Scholar 

  47. Weber PA, Merola S, Wasielewski A, Ballantyne GH (2002) Telerobotic-assisted laparoscopic right and sigmoid colectomies for benign disease. Dis Colon Rectum 45(12):1689–1694; discussion 1695-1686. https://doi.org/10.1097/01.DCR.0000037657.78153.A8

    Article  PubMed  Google Scholar 

  48. Park EJ, Kim CW, Cho MS, Baik SH, Kim DW, Min BS, Lee KY, Kim NK (2014) Multidimensional analyses of the learning curve of robotic low anterior resection for rectal cancer: 3-phase learning process comparison. Surg Endosc 28(10):2821–2831. https://doi.org/10.1007/s00464-014-3569-8

    Article  PubMed  Google Scholar 

  49. Park JS, Choi GS, Lim KH, Jang YS, Jun SH (2011) S052: a comparison of robot-assisted, laparoscopic, and open surgery in the treatment of rectal cancer. Surg Endosc 25(1):240–248. https://doi.org/10.1007/s00464-010-1166-z

    Article  PubMed  Google Scholar 

  50. de Wilde RF, Besselink MG, van der Tweel I, de Hingh IH, van Eijck CH, Dejong CH, Porte RJ, Gouma DJ, Busch OR, Molenaar IQ, Dutch Pancreatic Cancer G (2012) Impact of nationwide centralization of pancreaticoduodenectomy on hospital mortality. Br J Surg 99(3):404–410. https://doi.org/10.1002/bjs.8664

    Article  PubMed  Google Scholar 

  51. Schroeck FR, de Sousa CA, Kalman RA, Kalia MS, Pierre SA, Haleblian GE, Sun L, Moul JW, Albala DM (2008) Trainees do not negatively impact the institutional learning curve for robotic prostatectomy as characterized by operative time, estimated blood loss, and positive surgical margin rate. Urology 71(4):597–601. https://doi.org/10.1016/j.urology.2007.12.023

    Article  PubMed  Google Scholar 

  52. Seamon LG, Fowler JM, Richardson DL, Carlson MJ, Valmadre S, Phillips GS, Cohn DE (2009) A detailed analysis of the learning curve: robotic hysterectomy and pelvic-aortic lymphadenectomy for endometrial cancer. Gynecol Oncol 114(2):162–167. https://doi.org/10.1016/j.ygyno.2009.04.017

    Article  PubMed  Google Scholar 

  53. Daouadi M, Zureikat AH, Zenati MS, Choudry H, Tsung A, Bartlett DL, Hughes SJ, Lee KK, Moser AJ, Zeh HJ (2013) Robot-assisted minimally invasive distal pancreatectomy is superior to the laparoscopic technique. Ann Surg 257(1):128–132. https://doi.org/10.1097/SLA.0b013e31825fff08

    Article  PubMed  Google Scholar 

  54. McMillan MT, Zureikat AH, Hogg ME, Kowalsky SJ, Zeh HJ, Sprys MH, Vollmer CM Jr (2017) A propensity score-matched analysis of robotic vs open pancreatoduodenectomy on incidence of pancreatic fistula. JAMA Surg 152(4):327–335. https://doi.org/10.1001/jamasurg.2016.4755

    Article  PubMed  Google Scholar 

  55. Zureikat AH, Moser AJ, Boone BA, Bartlett DL, Zenati M, Zeh HJ 3rd (2013) 250 robotic pancreatic resections: safety and feasibility. Ann Surg 258(4):554–559; discussion 559-562. https://doi.org/10.1097/SLA.0b013e3182a4e87c

    PubMed  PubMed Central  Google Scholar 

  56. Anderson C, Ellenhorn J, Hellan M, Pigazzi A (2007) Pilot series of robot-assisted laparoscopic subtotal gastrectomy with extended lymphadenectomy for gastric cancer. Surg Endosc 21(9):1662–1666. https://doi.org/10.1007/s00464-007-9266-0

    Article  PubMed  Google Scholar 

  57. Patriti A, Ceccarelli G, Bellochi R, Bartoli A, Spaziani A, Di Zitti L, Casciola L (2008) Robot-assisted laparoscopic total and partial gastric resection with D2 lymph node dissection for adenocarcinoma. Surg Endosc 22(12):2753–2760. https://doi.org/10.1007/s00464-008-0129-0

    Article  PubMed  Google Scholar 

  58. Song J, Oh SJ, Kang WH, Hyung WJ, Choi SH, Noh SH (2009) Robot-assisted gastrectomy with lymph node dissection for gastric cancer: lessons learned from an initial 100 consecutive procedures. Ann Surg 249(6):927–932. https://doi.org/10.1097/01.sla.0000351688.64999.73

    Article  PubMed  Google Scholar 

  59. Isogaki J, Haruta S, Man IM, Suda K, Kawamura Y, Yoshimura F, Kawabata T, Inaba K, Ishikawa K, Ishida Y, Taniguchi K, Sato S, Kanaya S, Uyama I (2011) Robot-assisted surgery for gastric cancer: experience at our institute. Pathobiology 78(6):328–333. https://doi.org/10.1159/000330172

    Article  PubMed  Google Scholar 

  60. D'Annibale A, Pende V, Pernazza G, Monsellato I, Mazzocchi P, Lucandri G, Morpurgo E, Contardo T, Sovernigo G (2011) Full robotic gastrectomy with extended (D2) lymphadenectomy for gastric cancer: surgical technique and preliminary results. J Surg Res 166(2):e113–e120. https://doi.org/10.1016/j.jss.2010.11.881

    Article  PubMed  Google Scholar 

  61. Lee HH, Hur H, Jung H, Jeon HM, Park CH, Song KY (2011) Robot-assisted distal gastrectomy for gastric cancer: initial experience. Am J Surg 201(6):841–845. https://doi.org/10.1016/j.amjsurg.2010.05.013

    Article  PubMed  Google Scholar 

  62. Tokunaga M, Sugisawa N, Kondo J, Tanizawa Y, Bando E, Kawamura T, Terashima M (2014) Early phase II study of robot-assisted distal gastrectomy with nodal dissection for clinical stage IA gastric cancer. Gastric Cancer 17(3):542–547. https://doi.org/10.1007/s10120-013-0293-3

    Article  CAS  PubMed  Google Scholar 

  63. Marano A, Choi YY, Hyung WJ, Kim YM, Kim J, Noh SH (2013) Robotic versus laparoscopic versus open gastrectomy: a meta-analysis. J Gastric Cancer 13(3):136–148. https://doi.org/10.5230/jgc.2013.13.3.136

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yang SY, Roh KH, Kim YN, Cho M, Lim SH, Son T, Hyung WJ, Kim HI (2017) Surgical outcomes after open, laparoscopic, and robotic gastrectomy for gastric cancer. Ann Surg Oncol. https://doi.org/10.1245/s10434-017-5851-1

  65. Nakauchi M, Suda K, Susumu S, Kadoya S, Inaba K, Ishida Y, Uyama I (2016) Comparison of the long-term outcomes of robotic radical gastrectomy for gastric cancer and conventional laparoscopic approach: a single institutional retrospective cohort study. Surg Endosc 30(12):5444–5452. https://doi.org/10.1007/s00464-016-4904-z

    Article  PubMed  Google Scholar 

  66. Coratti A, Fernandes E, Lombardi A, Di Marino M, Annecchiarico M, Felicioni L, Giulianotti PC (2015) Robot-assisted surgery for gastric carcinoma: five years follow-up and beyond: a single western center experience and long-term oncological outcomes. Eur J Surg Oncol 41(8):1106–1113. https://doi.org/10.1016/j.ejso.2015.01.014

    Article  CAS  PubMed  Google Scholar 

  67. Jimenez Rodriguez RM, Diaz Pavon JM, de La Portilla de Juan F, Prendes Sillero E, Hisnard Cadet Dussort JM, Padillo J (2011) Prospective randomised study: robotic-assisted versus conventional laparoscopic surgery in colorectal cancer resection. Cir Esp 89(7):432–438. https://doi.org/10.1016/j.ciresp.2011.01.017

    Article  PubMed  Google Scholar 

  68. Yang Y, Wang F, Zhang P, Shi C, Zou Y, Qin H, Ma Y (2012) Robot-assisted versus conventional laparoscopic surgery for colorectal disease, focusing on rectal cancer: a meta-analysis. Ann Surg Oncol 19(12):3727–3736. https://doi.org/10.1245/s10434-012-2429-9

    Article  PubMed  Google Scholar 

  69. Kwak JM, Kim SH, Kim J, Son DN, Baek SJ, Cho JS (2011) Robotic vs laparoscopic resection of rectal cancer: short-term outcomes of a case-control study. Dis Colon Rectum 54(2):151–156. https://doi.org/10.1007/DCR.0b013e3181fec4fd

    Article  PubMed  Google Scholar 

  70. Park EJ, Cho MS, Baek SJ, Hur H, Min BS, Baik SH, Lee KY, Kim NK (2015) Long-term oncologic outcomes of robotic low anterior resection for rectal cancer: a comparative study with laparoscopic surgery. Ann Surg 261(1):129–137. https://doi.org/10.1097/SLA.0000000000000613

    Article  PubMed  Google Scholar 

  71. Tsung A, Geller DA, Sukato DC, Sabbaghian S, Tohme S, Steel J, Marsh W, Reddy SK, Bartlett DL (2014) Robotic versus laparoscopic hepatectomy: a matched comparison. Ann Surg 259(3):549–555. https://doi.org/10.1097/SLA.0000000000000250

    Article  PubMed  Google Scholar 

  72. Packiam V, Bartlett DL, Tohme S, Reddy S, Marsh JW, Geller DA, Tsung A (2012) Minimally invasive liver resection: robotic versus laparoscopic left lateral sectionectomy. J Gastrointest Surg 16(12):2233–2238. https://doi.org/10.1007/s11605-012-2040-1

    Article  PubMed  PubMed Central  Google Scholar 

  73. Berber E, Akyildiz HY, Aucejo F, Gunasekaran G, Chalikonda S, Fung J (2010) Robotic versus laparoscopic resection of liver tumours. HPB 12(8):583–586. https://doi.org/10.1111/j.1477-2574.2010.00234.x

    Article  PubMed  PubMed Central  Google Scholar 

  74. Tranchart H, Ceribelli C, Ferretti S, Dagher I, Patriti A (2014) Traditional versus robot-assisted full laparoscopic liver resection: a matched-pair comparative study. World J Surg 38(11):2904–2909. https://doi.org/10.1007/s00268-014-2679-8

    Article  PubMed  Google Scholar 

  75. Troisi RI, Patriti A, Montalti R, Casciola L (2013) Robot assistance in liver surgery: a real advantage over a fully laparoscopic approach? Results of a comparative bi-institutional analysis. Int J Med Rob 9(2):160–166. https://doi.org/10.1002/rcs.1495

    Article  Google Scholar 

  76. Qiu J, Chen S, Chengyou D (2016) A systematic review of robotic-assisted liver resection and meta-analysis of robotic versus laparoscopic hepatectomy for hepatic neoplasms. Surg Endosc 30(3):862–875. https://doi.org/10.1007/s00464-015-4306-7

    Article  PubMed  Google Scholar 

  77. Chen PD, Wu CY, Hu RH, Chou WH, Lai HS, Liang JT, Lee PH, Wu YM (2017) Robotic versus open hepatectomy for hepatocellular carcinoma: a matched comparison. Ann Surg Oncol 24(4):1021–1028. https://doi.org/10.1245/s10434-016-5638-9

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence M. Knab.

Ethics declarations

Conflict of interest

Melissa Hogg receives funding from the Veterans’ Affairs in the way of salary support. She also has grants from Intuitive Surgical and the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES). The other authors have nothing to disclose.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knab, L.M., Zureikat, A.H., Zeh, H.J. et al. Towards standardized robotic surgery in gastrointestinal oncology. Langenbecks Arch Surg 402, 1003–1014 (2017). https://doi.org/10.1007/s00423-017-1623-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-017-1623-4

Keywords

Navigation