Skip to main content
Log in

Effect of magnetic field on the slow motion of a porous spheroid: Brinkman’s model

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The major goal of this work is to analyze the magnetic effect on the creeping viscous flow past a porous spheroidal particle, a particle of slightly deformed spherical shape. Brinkman’s model is proposed to govern the flow in the porous media. Boundary value problem considers the conditions of continuity of velocity components, continuity of normal stresses, and stress jump boundary condition for tangential stress. A transverse magnetic field of uniform nature is applied to the flow. An expression for the drag force acting on the spheroidal particle is derived analytically. The effects of the physical parameters involved in the flow like permeability, deformation, Hartmann number’s, viscosity ratio, and stress jump coefficient parameters are visualized through graphs and tables. The applied magnetic field seems to suppress the flow of fluid that leads to the increase in the drag experienced on the porous spheroid. It is also observed that the increase in the deformation, stress jump, and permeability decreases the drag coefficient. Our results without magnetic effect match with the results reported earlier in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stokes, G.G.: On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb. Philos. Soc. 9, 8–106 (1851)

    Google Scholar 

  2. Darcy, H.P.G.: Les fontaines publiques de la ville de dijon. Proc. R. Soc. Lond. Ser. 83, 357–369 (1910)

    Google Scholar 

  3. Brinkman, H.C.: A calculation of viscous force exerted by flowing fluid on dense swarm of particles. Appl. Sci. Res. A1, 27–34 (1947). https://doi.org/10.1007/BF02120313

    Article  MATH  Google Scholar 

  4. Beavers, G.S., Joseph, D.D.: Boundary condition at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967). https://doi.org/10.1017/S0022112067001375

    Article  Google Scholar 

  5. Saffman, P.G.: On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 50, 93–101 (1971). https://doi.org/10.1002/sapm197150293

    Article  MATH  Google Scholar 

  6. Ochoa-Tapia, J.A., Whitaker, S.J.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid I, theoretical development. Int. J. Heat Mass Transf. 38, 2635–2646 (1995). https://doi.org/10.1016/0017-9310(94)00346-W

    Article  MATH  Google Scholar 

  7. Ochoa-Tapia, J.A., Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid II, comparison with experiment. Int. J. Heat Mass Transf. 38, 2647–2655 (1995). https://doi.org/10.1016/0017-9310(94)00347-X

    Article  MATH  Google Scholar 

  8. Zlatanovski, T.: Axi-symmetric creeping flow past a porous prolate spheroidal particle using the Brinkman model. Q. J. Mech. Appl. Math. 52(1), 111–126 (1999). https://doi.org/10.1093/qjmam/52.1.111

    Article  MathSciNet  MATH  Google Scholar 

  9. Saad, E.I.: Translation and rotation of a porous spheroid in a spheroidal container. Can. J. Phys. 88, 689–700 (2010). https://doi.org/10.1139/P10-040

    Article  Google Scholar 

  10. Saad, E.I.: Stokes flow past an assemblage of axisymmetric porous spheroidal particle in cell models. J. Porous Media 15(9), 849–866 (2012). https://doi.org/10.1615/JPorMedia.v15.i9.40

    Article  Google Scholar 

  11. Srinivasacharya, D., Krishna Prasad, M.: Creeping flow past a porous approximate sphere-Stress jump boundary condition. Z. Angew. Math. Mech. 91, 824–831 (2011). https://doi.org/10.1002/zamm.201000138

    Article  MathSciNet  MATH  Google Scholar 

  12. Srinivasacharya, D., Krishna Prasad, M.: Creeping flow past a porous approximately spherical shell: stress jump boundary condition. ANZIAM J. 52, 289–300 (2011). https://doi.org/10.1017/S144618111100071X

    Article  MathSciNet  MATH  Google Scholar 

  13. Srinivasacharya, D., Krishna Prasad, M.: Axisymmetric creeping flow past a porous approximate sphere with an impermeable core. Eur. Phys. J. Plus 128, 9 (2013). https://doi.org/10.1140/epjp/i2013-13009-1

    Article  Google Scholar 

  14. Sherief, H.H., Faltas, M.S., Saad, E.I.: Slip at the surface of an oscillating spheroidal particle in a micropolar fluid. ANZIAM J. 55(E), E1–E50 (2013). https://doi.org/10.21914/anziamj.v55i0.6813

    Article  MathSciNet  MATH  Google Scholar 

  15. Srinivasacharya, D., Krishna Prasad, M.: Rotation of a porous approximate sphere in an approximate spherical container. Latin Am. Appl. Res. 45, 107–112 (2015)

    Google Scholar 

  16. Krishna Prasad, M., Kaur, M.: Stokes flow of viscous fluid past a micropolar fluid spheroid. Adv. Appl. Math. Mech. 9(5), 1076–1093 (2017). https://doi.org/10.4208/aamm.2015.m1200

    Article  MathSciNet  Google Scholar 

  17. Krishna Prasad, M., Bucha, T.: Steady viscous flow around a permeable spheroidal particle. Int. J. Appl. Comput. Math. 5, 109 (2019). https://doi.org/10.1007/s40819-019-0692-1

    Article  MathSciNet  MATH  Google Scholar 

  18. Cramer, K.R., Pai, S.I.: Magnetofluid Dynamics for Engineers and Applied Physicists. McGraw-Hills, New York (1973). https://doi.org/10.1017/CBO9780511626333

    Book  Google Scholar 

  19. Davidson, P.A.: An Introduction to Magnetohydrodynamics. Cambridge University Press, London (2001)

    Book  Google Scholar 

  20. Verma, V.K., Singh, S.K.: Magnetohydrodynamic flow in a circular channel filled with a porous medium. J. Porous Media 18(9), 923–928 (2015). https://doi.org/10.1615/JPorMedia.v18.i9.80

    Article  Google Scholar 

  21. Yadav, P.K., Deo, S., Singh, S.P., Filippov, A.: Effect of magnetic field on the hydrodynamic permeability of a membrane built up by porous spherical particles. Colloid J. 79(1), 160–171 (2017). https://doi.org/10.1134/S1061933X1606020X

    Article  Google Scholar 

  22. Saad, E.I.: Effect of magnetic fields on the motion of porous particles for Happel and Kuwabara models. J. Porous Media 21(7), 637–664 (2018). https://doi.org/10.1615/JPorMedia.v21.i7.50

    Article  Google Scholar 

  23. Nazeer, M., Ali, N., Javed, T.: Natural convection flow of micropolar fluid inside a porous square conduit: effects of magnetic field, heat generation/absorption and thermal radiation. J. Porous Media 21(10), 953–975 (2018). https://doi.org/10.1615/JPorMedia.2018021123

    Article  Google Scholar 

  24. Nazeer, M., Ali, N., Javed, T., Asghar, Z.: Natural convection through spherical particles of micropolar fluid enclosed in trapezoidal porous container: impact of magnetic field and heated bottom wall. Eur. Phys. J. Plus 133, 423 (2018). https://doi.org/10.1140/epjp/i2018-12217-5

    Article  Google Scholar 

  25. Nazeer, M., Ali, N., Javed, T.: Numerical simulation of MHD flow of micropolar fluid inside a porous inclined cavity with uniform and non-uniform heated bottom wall. Can. J. Phys. 96(6), 576–593 (2018). https://doi.org/10.1139/cjp-2017-0639

    Article  Google Scholar 

  26. Nazeer, M., Ali, N., Javed, T.: Numerical simulations of MHD forced convection flow of micropolar fluid inside a right angle triangular cavity saturated with porous medium: effects of vertical moving wall. Can. J. Phys. 97(1), 1–13 (2019). https://doi.org/10.1139/cjp-2017-0904

    Article  Google Scholar 

  27. Ali, N., Nazeer, M., Javed, T., Razzaq, M.: Finite element analysis of bi-viscosity fluid enclosed in a triangular cavity under thermal and magnetic effects. Eur. Phys. J. Plus 2, 134 (2019). https://doi.org/10.1140/epjp/i2019-12448-x

    Article  Google Scholar 

  28. Nazeer, M., Ali, N., Javed, T., Razzaq, M.: Finite element simulations based on Peclet number energy transfer in a lid-driven porous square container filled with micropolar fluid: impact of thermal boundary conditions. Int. J. Hydrogen Energy 44, 953–975 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.236

    Article  Google Scholar 

  29. Nazeer, M., Ali, N., Javed, T., Waqas Nazir, M.: Numerical analysis of full MHD model with Galerkin finite element method. Eur. Phys. J. Plus 134, 204 (2019). https://doi.org/10.1140/epjp/i2019-12562-9

    Article  Google Scholar 

  30. Nazeer, M., Ahmad, F., Saeed, M., Saleem, A., Naveed, S., Akram, Z.: Numerical solution for flow of a Eyring-powell fluid in a pipe with prescribed surface temperature. J. Braz. Soc. Mech. Sci. Eng. 41, 518 (2019). https://doi.org/10.1007/s40430-019-2005-3

    Article  Google Scholar 

  31. Nayak, M.K., Shaw, S., Ijaz Khan, M., Pandeyd, V.S., Nazeer, M.: Flow and thermal analysis on Darcy–Forchheimer flow of copper-water nanofluid due to a rotating disk: a static and dynamic approach. J. Mater. Res. Technol. 9(4), 7387–7408 (2020). https://doi.org/10.1016/j.jmrt.2020.04.074

    Article  Google Scholar 

  32. Ijaz Khan, M., Khan, W.A., Waqas, M., Kadry, S., Chu, Y.-M., Nazeer, M.: Role of dipole interactions in Darcy-Forchheimer first order velocity slip nanofluid flow of Williamson model with Robin conditions. Appl. Nanosci. (2020). https://doi.org/10.1007/s13204-020-01513-9

    Article  Google Scholar 

  33. Akram, S., Razia, A., Afzal, F.: Effects of velocity second slip model and induced magnetic field on peristaltic transport of non-Newtonian fluid in the presence of double-diffusivity convection in nano fluids. Arch. Appl. Mech. 90, 1583–1603 (2020). https://doi.org/10.1007/s00419-020-01685-4

    Article  Google Scholar 

  34. Bilal, M., Nazeer, M.: Numerical analysis for the non-Newtonian flow over stratified stretching/shrinking inclined sheet with the aligned magnetic field and nonlinear convection. Arch. Appl. Mech. (2020). https://doi.org/10.1007/s00419-020-01798-w

    Article  Google Scholar 

  35. Nabil, T.M., El-Dabe, M., Abou-Zeid, Y., Mohamed, M.A.A., Abd-Elmoneim, M.M.: MHD peristaltic flow of non-Newtonian power-law nanofluid through a non-Darcy porous medium inside a non-uniform inclined channel. Arch. Appl. Mech. (2020). https://doi.org/10.1007/s00419-020-01810-3

    Article  Google Scholar 

  36. Krishna Prasad, M., Bucha, T.: Impact of magnetic field on flow past cylindrical shell using cell model. J. Braz. Soc. Mech. Sci. Eng. 41, 320 (2019). https://doi.org/10.1007/s40430-019-1820-x

    Article  Google Scholar 

  37. Krishna Prasad, M., Bucha, T.: Effect of magnetic field on the steady viscous flow around a semipermeable spherical particle. Int. J. Appl. Comput. Math. 5, 98 (2019). https://doi.org/10.1007/s40819-019-0668-1

    Article  MathSciNet  MATH  Google Scholar 

  38. Krishna Prasad, M., Bucha, T.: Creeping flow of fluid sphere contained in a spherical envelope: magnetic effect. SN Appl. Sci. 1, 1594 (2019). https://doi.org/10.1007/s42452-019-1622-x

    Article  Google Scholar 

  39. Krishna Prasad, M., Bucha, T.: Magnetohydrodynamic creeping flow around a weakly permeable spherical particle in cell models. Pramana J. Phys. 94, 24 (2020). https://doi.org/10.1007/s12043-019-1892-2

    Article  Google Scholar 

  40. Krishna Prasad, M., Bucha, T.: Flow past composite cylindrical shell of porous layer with a liquid core: magnetic effect. J. Braz. Soc. Mech. Sci. Eng. 42, 452 (2020). https://doi.org/10.1007/s40430-020-02539-4

    Article  Google Scholar 

  41. Krishna Prasad, M., Bucha, T.: MHD viscous flow past a weakly permeable cylinder using Happel and Kuwabara cell models. Iran. J. Sci. Technol. Trans. Sci. 44, 1063–1073 (2020). https://doi.org/10.1007/s40995-020-00894-4

    Article  MathSciNet  Google Scholar 

  42. Nield, D.A., Bejan, A.: Convection in Porous Media. Studies in Applied Mathematics, vol. 3. Springer, New York (2006)

    MATH  Google Scholar 

  43. Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics. Englewood Cliffs, Prentice-Hall (1965)

    MATH  Google Scholar 

  44. Avellaneda, M., Torquato, S.: Rigorous link between fluid permeability, electrical conductivity, and relaxation times for transport in porous media. Phys. Fluids A Fluid Dyn. (1991). https://doi.org/10.1063/1.858194

    Article  MathSciNet  MATH  Google Scholar 

  45. Neale, G., Epstein, N.: Creeping flow relative to permeable spheres. Chem. Eng. Sci. 28, 1865–1874 (1973). https://doi.org/10.1016/0009-2509(73)85070-5

    Article  Google Scholar 

  46. Tiwari, A., Yadav, P.K., Singh, P.: Stokes flow through assemblage of non homogeneous porous cylindrical particle using cell model technique. Natl. Acad. Sci. Lett. 4(1), 53–57 (2018). https://doi.org/10.1007/s40009-017-0605-y

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Prasad Madasu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

On applying Eqs. (25) to (28) up to first order of \(\alpha _{m}\), we obtain the following equations

$$\begin{aligned}&\left[ -1-a_2-S_{2}\ b_2+c_2+T_{2}\ d_2\right] P_{1}(\zeta ) +\alpha _{m}\omega _{1}\left[ \vartheta _{m}{(\zeta )}P_{1}(\zeta )+\vartheta _{2}(\zeta )P_{m-1}(\zeta )\right] \nonumber \\&\quad +\,\sum _{n=3}^{\infty }\left[ -A_n-S_{7}\ B_n+C_n+T_{7}\ D_n\right] P_{n-1}(\zeta )=0 \end{aligned}$$
(A.1)
$$\begin{aligned}&\left[ 2-a_2-S_{3}\ b_2-2\ c_2+T_{3}\ d_2\right] \vartheta _{2}(\zeta )+\alpha _{m}\omega _2\vartheta _{m}{(\zeta )}\vartheta _{2}(\zeta ) \nonumber \\&\quad +\,\sum _{n=3}^{\infty }\left[ (1-n)A_n-S_{8}\ B_n-n\ C_n+T_{8}\ D_n\right] \vartheta _{n}(\zeta )=0 \end{aligned}$$
(A.2)
$$\begin{aligned}&\left[ -\alpha ^{2}+(6+\alpha ^{2}/2)\ a_2+2\ S_{4}\ b_2+\gamma ^{2}\beta ^{2}\ c_2-2\gamma ^{2}\ T_{4}\ d_2\right] P_{1}(\zeta )\nonumber \\&\quad +\,\alpha _{m}\omega _3\vartheta _{m}(\zeta )P_{1}(\zeta ) +\alpha _{m}\omega _4\left[ P_{1}(\zeta )\vartheta _{m}(\zeta )+\vartheta _{2}(\zeta )P_{m-1}(\zeta )\right] \nonumber \\&\quad +\,\sum _{n=3}^{\infty }\left[ \left( 2(n+1)+{\alpha ^{2}}/n\right) \ A_n+2\ S_{9}\ B_n+\left( 2\gamma ^{2}(n-2)+\frac{\gamma ^{2}\beta ^{2}}{(n-1)}\right) \ C_n -2\gamma ^{2}\ T_{9}\ D_n\right] P_{n-1}(\zeta )=0 \end{aligned}$$
(A.3)
$$\begin{aligned}&[-6a_2-S_{5}\ b_2-2\sigma \xi _{1}\gamma \ c_2+\left( \gamma ^{2}\ T_{5}+\sigma \xi _{1}\gamma \ T_{3}\right) \ d_2]\vartheta _{2}(\zeta )\nonumber \\&\quad +\,\alpha _{m}\omega _5\vartheta _2(\zeta )\vartheta _m(\zeta ) +2\alpha _m\omega _6\ P_{1}(\zeta )\vartheta _2(\zeta )P_{m-1}(\zeta )\nonumber \\&\quad +\,\sum _{n=3}^{\infty }[2(1-n^{2})A_n-S_{10}\ B_n+\left( n\gamma (2\gamma (n-2)-\sigma \xi _{1})\right) C_n+ \left( \gamma ^{2}\ T_{10}+\sigma \xi _{1}\gamma \ T_{8}\right) D_n]\vartheta _{n}(\zeta )=0\nonumber \\ \end{aligned}$$
(A.4)

where

$$\begin{aligned} S_{1}= & {} K_{1/2}(\alpha ),\qquad T_{1}=I_{1/2}(\beta ),\\ S_{2}= & {} K_{3/2}(\alpha ),\qquad T_{2}=I_{3/2}(\beta ),\\ S_{3}= & {} S_{2}+\alpha \ S_{1}, \qquad T_{3}=T_{2}-\beta \ T_{1},\\ S_{4}= & {} 3\ S_{2}+\alpha \ S_{1},\qquad T_{4}=3\ T_{2}-\beta \ T_{1},\\ S_{5}= & {} (6+\alpha ^{2})\ S_{2}+2\ \alpha \ S_{1},\qquad T_{5}=(6+\beta ^{2})\ T_{2}-2\ \beta \ T_{1},\\ S_{6}= & {} K_{n-3/2}(\alpha ), \qquad T_{6}=I_{n-3/2}(\beta ),\\ S_{7}= & {} K_{n-1/2}(\alpha ), \qquad T_{7}=I_{n-1/2}(\beta ),\\ S_{8}= & {} (n-1)\ S_{7}+\alpha \ S_{6}, \qquad T_{8}=(n-1)\ T_{7}-\beta \ T_{6},\\ S_{9}= & {} (n+1)\ S_{7}+\alpha \ S_{6}, \qquad T_{9}=(n+1)\ T_{7}-\beta \ T_{6},\\ S_{10}= & {} (2(n^{2}-1)+\alpha ^{2})\ S_{7}+2\ \alpha \ S_{6}, \qquad T_{10}=(2(n^{2}-1)+\beta ^{2})\ T_{10}-2\ \beta \ T_{9},\\ \omega _{1}= & {} -2+a_2+S_{3}\ b_2+2\ c_2-T_{3}\ d_2, \\ \omega _{2}= & {} 2+2\ a_2+\left( 2+\alpha ^{2}\right) \ S_{2}\ b_2-2c_2-\left( 2+\beta ^{2}\right) T_{2}\ d_2, \\ \omega _{3}= & {} -\alpha ^{2}-(\alpha ^{2}+12)\ a_2-4\ S_{4}\ b_2+\gamma ^{2}\beta ^{2}\ c_2+4\gamma ^{2}\ T_{4}\ d_2, \\ \omega _{4}= & {} -12\ a_2-2\ S_{5}\ b_2+2\gamma ^{2}\ T_{5}\ d_2, \\ \omega _{5}= & {} 18a_2+(6+\alpha ^{2})\ S_{4}\ b_2-2\sigma \xi _{1}\gamma \ c_2-\left( \gamma ^{2}(6+\beta ^{2})\ T_{4}+\sigma \xi _{1}\gamma (2+\beta ^{2})\ T_{2}\right) \ d_2,\\ \omega _{6}= & {} -9a_2- 3\ S_{4}\ b_2+\sigma \xi _{1}\gamma c_2+\left( 3\gamma ^{2}\ T_{4}\ +\sigma \xi _{1}\gamma \ T_{2}\right) \ d_2, \end{aligned}$$

The leading terms of Eqs. (A.1)–(A.4) are equated to zero, and we get

$$\begin{aligned}&-1-a_2-S_{2}\ b_2+c_2+T_{2}\ d_2=0 \end{aligned}$$
(A.5)
$$\begin{aligned}&2-a_2-S_{3}\ b_2-2\ c_2+T_{3}\ d_2=0 \end{aligned}$$
(A.6)
$$\begin{aligned}&-\alpha ^{2}+(6+\alpha ^{2}/2)\ a_2+2\ S_{4}\ b_2+\gamma ^{2}\beta ^{2}\ c_2-2\gamma ^{2}\ T_{4}\ d_2=0 \end{aligned}$$
(A.7)
$$\begin{aligned}&-6a_2-S_{5}\ b_2-2\sigma \xi _{1}\gamma \ c_2+\left( \gamma ^{2}\ T_{5}+\sigma \xi _{1}\gamma \ T_{3}\right) \ d_2=0 \end{aligned}$$
(A.8)

Solving this system of Eqs. (A.5)–(A.8), the values of \(a_2\), \(b_2\), \(c_2\), and \(d_2\) are obtained. Now, Eqs. (A.1)–(A.4) are

$$\begin{aligned}&\sum _{n=3}^{\infty }\left[ -A_n-S_{7}\ B_n+C_n+T_{7}\ D_n\right] P_{n-1}(\zeta )+\alpha _{m}\omega _{1}\left[ \vartheta _{m}{(\zeta )}P_{1}(\zeta )+\vartheta _{2}(\zeta )P_{m-1}(\zeta )\right] =0 \end{aligned}$$
(A.9)
$$\begin{aligned}&\sum _{n=3}^{\infty }\left[ (1-n)A_n-S_{8}\ B_n-n\ C_n+T_{8}\ D_n\right] \vartheta _{n}(\zeta )+\alpha _{m}\omega _2\vartheta _{m}{(\zeta )}\vartheta _{2}(\zeta )=0 \end{aligned}$$
(A.10)
$$\begin{aligned}&\sum _{n=3}^{\infty }\left[ \left( 2(n+1)+{\alpha ^{2}}/n\right) \ A_n+2\ S_{9}\ B_n+\left( 2\gamma ^{2}(n-2)+\frac{\gamma ^{2}\beta ^{2}}{(n-1)}\right) \ C_n -2\gamma ^{2}\ T_{9}\ D_n\right] P_{n-1}(\zeta )\nonumber \\&\quad +\,\alpha _{m}\omega _3\vartheta _{m}(\zeta )P_{1}(\zeta ) +\alpha _{m}\omega _4\left[ P_{1}(\zeta )\vartheta _{m}(\zeta )+\vartheta _{2}(\zeta )P_{m-1}(\zeta )\right] =0 \end{aligned}$$
(A.11)
$$\begin{aligned}&\sum _{n=3}^{\infty }[2(1-n^{2})A_n-S_{10}\ B_n+\left( n\gamma (2\gamma (n-2)-\sigma \xi _{1})\right) C_n+ \left( \gamma ^{2}\ T_{10}+\sigma \xi _{1}\gamma \ T_{8}\right) D_n]\vartheta _{n}(\zeta )\nonumber \\&\quad +\,\alpha _{m}\omega _5\vartheta _2(\zeta )\vartheta _m(\zeta ) +2\alpha _m\omega _6\ P_{1}(\zeta )\vartheta _2(\zeta )P_{m-1}(\zeta )=0 \end{aligned}$$
(A.12)

To find the arbitrary constants \(A_n\), \(B_n\), \(C_n\), and \(D_n\), we use the following identities

$$\begin{aligned}&\vartheta _{m}{(\zeta )}\vartheta _{2}{(\zeta )}=-\,\frac{(m-2)(m-3)}{2(2m-1)(2m-3)}\vartheta _{m-2}{(\zeta )}+\frac{m(m-1)}{(2m+1)(2m-3)}\vartheta _{m}{(\zeta )} -\frac{(m+1)(m+2)}{2(2m-1)(2m+1)}\vartheta _{m+2}{(\zeta )} \end{aligned}$$
(A.13)
$$\begin{aligned}&\vartheta _{m}{(\zeta )}P_{1}{(\zeta )}+P_{m-1}{(\zeta )}\vartheta _{2}{(\zeta )}=-\frac{(m-2)(m-3)}{2(2m-1)(2m-3)}P_{m-3}{(\zeta )}\nonumber \\&\quad +\,\frac{m(m-1)}{(2m+1)(2m-3)}P_{m-1}{(\zeta )}-\frac{(m+1)(m+2)}{2(2m-1)(2m+1)}P_{m+1}{(\zeta )} \end{aligned}$$
(A.14)
$$\begin{aligned}&P_{1}{(\zeta )}\vartheta _{2}{(\zeta )}P_{m-1}{(\zeta )}=-\frac{(m-1)(m-2)(m-3)}{2(2m-1)(2m-3)}\vartheta _{m-2}{(\zeta )}+\frac{m(m-1)}{2(2m+1)(2m-3)}\vartheta _{m}{(\zeta )}+\frac{m(m+1)(m+2)}{2(2m-1)(2m+1)}\vartheta _{m+2}{(\zeta )} \end{aligned}$$
(A.15)
$$\begin{aligned}&\vartheta _{m}{(\zeta )}P_{1}{(\zeta )}=\frac{(m-2)}{(2m-1)(2m-3)}P_{m-3}{(\zeta )}+\frac{1}{(2m+1)(2m-3)}P_{m-1}{(\zeta )}-\frac{(m+1)}{(2m-1)(2m+1)}P_{m+1}{(\zeta )} \end{aligned}$$
(A.16)

In solving Eqs. (A.9)–(A.12), it is observed that

$$\begin{aligned} A_n=B_n=C_n=D_n=0 \quad \text{ for } \quad n\ne m-2,m,m+2 \end{aligned}$$
(A.17)

For \(n=m-2,m,m+2\), we have the following system of equations

$$\begin{aligned}&-\,A_n-S_{7}\ B_n+C_n+T_{7}\ D_n+\omega _{1} \overline{a}_n=0 \end{aligned}$$
(A.18)
$$\begin{aligned}&(1-n)A_n-S_{8}\ B_n-n\ C_n+T_{8}\ D_n+\omega _2 \overline{a}_n=0 \end{aligned}$$
(A.19)
$$\begin{aligned}&\left( 2(n+1)+{\alpha ^{2}}/n\right) \ A_n+2\ S_{9}\ B_n+\left( 2\gamma ^{2}(n-2)+\frac{\gamma ^{2}\beta ^{2}}{(n-1)}\right) \ C_n -2\gamma ^{2}\ T_{9}\ D_n\nonumber \\&\quad +\,\omega _3 \overline{c}_n+\omega _4 \overline{a}_n=0 \end{aligned}$$
(A.20)
$$\begin{aligned}&2(1-n^{2})A_n-S_{10}\ B_n+\left( n\gamma (2\gamma (n-2)-\sigma \xi _{1})\right) C_n+ \left( \gamma ^{2}\ T_{10}+\sigma \xi _{1}\gamma \ T_{8}\right) D_n\nonumber \\&\quad +\,\omega _5 \overline{a}_n+2\omega _6 \overline{b}_n=0 \end{aligned}$$
(A.21)

where

$$\begin{aligned} \overline{a}_{n}= & {} \frac{n(n-1)\alpha _{n}}{(2n+1)(2n-3)}, \end{aligned}$$
(A.22)
$$\begin{aligned} \overline{b}_{n}= & {} \frac{n(n-1)\alpha _{n}}{2(2n+1)(2n-3)}, \end{aligned}$$
(A.23)
$$\begin{aligned} \overline{c}_{n}= & {} \frac{\alpha _{n}}{(2n+1)(2n-3)}. \end{aligned}$$
(A.24)

Solving Eqs. (A.18)–(A.21) gives the expressions for \(A_n\), \(B_n\), \(C_n\), and \(D_n\) when \(n=m-2,m,m+2\).

Appendix B

The symbols present in Eqs. (41)–(47) are defined by

$$\begin{aligned} \delta _{1}= & {} \alpha _{1}^{2}+3\alpha _{1}+3, \\ \delta _2= & {} {\alpha _{1}}^{2}+3\alpha _{1}-9, \\ \delta _3= & {} \alpha _{1}^{2}+9\alpha _{1}+9, \\ \delta _4= & {} \alpha _{1}^{2}+\alpha _{1}+9, \\ \delta _5= & {} {\alpha _{1}}^{2}+7 \alpha _{1}+3, \\ \delta _6= & {} {\alpha _{1}}^{3}+3 \alpha _{1}^{2}+6{\alpha _{1}}+6, \\ \delta _7= & {} {\alpha _{1}}^{3}+3 \alpha _{1}^{2}+18{\alpha _{1}}+18, \\ \delta _8= & {} \beta _{1}^4-3\beta _{1}^{2}-12, \\ \delta _9= & {} \beta _{1}^{2}+3, \\ \delta _{10}= & {} \beta _{1}^{2}+2, \\ \Delta _{1}= & {} 4 \left( \sinh \beta _{1} \ \delta _9-3 {\beta _{1}}\ \cosh \beta _{1}\right) +\gamma ^{2} \left( \sinh \beta _{1} \ \delta _8-{\beta _{1}}\ \left( \beta _{1}^{2}-12\right) \ \cosh \beta _{1}\right) , \\ \Delta _2= & {} \gamma ^{4} \left( 3 \sinh \beta _{1}\delta _{10}-\beta _{1}\ \left( \beta _{1}^{2}+6\right) \ \cosh {\beta _{1}}\right) , \\ \Delta _3= & {} \sinh \beta _{1}\delta _9-3 \beta _{1} \cos \beta _{1} \\ \Delta _4= & {} \gamma ^{3}\left( \sinh \beta _{1}\delta _8-{\beta _{1}}\left( \beta _{1}^{2}-12 \right) \cosh {\beta 1}\right) , \\ \Delta _5= & {} \sinh {\beta _{1}}\ \left( 3 {\beta 1}^{2}{\delta _5}+6{\delta _3}-2 \left( {\alpha _{1}}+3\right) \ {\beta _{1}}^{4}\right) -\cosh {\beta _{1}}\ \left( 6{\delta _3}+{\beta _{1}}^{2}{\delta _2}\right) {\beta _{1}}, \\ \nu _{1}= & {} \left( \chi _{1}^4-3 {\chi _{1}}^{2}-12\right) \sinh \chi _{1} -{\chi _{1}}\ \left( \chi _{1}^{2}-12\right) \ \cosh \chi _{1}, \\ \nu _2= & {} \left( \chi _{1}^{2}+3\right) \sinh \chi _{1} -3{\chi _{1}} \cosh \chi _{1}, \\ \nu _3= & {} 3\left( \chi _{1}^{2}+2\right) \ \sinh \chi _{1} -{\chi _{1}}\ \left( \chi _{1}^{2}+6\right) \ \cosh \chi _{1}, \\ \nu _4= & {} \left( 2 \chi _{1}^4-3 {\chi _{1}}^{2}-18\right) \ \sinh \chi _{1} -3{\chi _{1}}\ \left( \chi _{1}^{2}-6\right) \ \cosh \chi _{1}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madasu, K.P., Bucha, T. Effect of magnetic field on the slow motion of a porous spheroid: Brinkman’s model. Arch Appl Mech 91, 1739–1755 (2021). https://doi.org/10.1007/s00419-020-01852-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01852-7

Keywords

Navigation