Skip to main content
Log in

Steady Viscous Flow Around a Permeable Spheroidal Particle

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Stokes incompressible viscous fluid flow through a permeable spheroidal particle which is a bit deformed from the shape of a sphere is studied and solved analytically. It consists of two regions, porous region which obeys Darcy’s law and liquid region in which Stokes approximation is used. Boundary conditions used at the interface are mass conservation, balance of normal stress, and Beavers–Joseph–Saffman–Jones condition. Expression for drag which acts on the spheroid is obtained and well known results are deduced in the limiting cases. Variation of drag coefficient with various parameters like deformation, slip, permeability, no slip are shown by graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Darcy, H.P.G.: Les fontaines publiques de la ville de dijon. Proc. R. Soc. Lond. Ser. 83, 357–369 (1910)

    Article  Google Scholar 

  2. Brinkman, H.C.: A calculation of viscous force exerted by a flowing fluid on dense swarm of particles. Appl. Sci. Res. A 1(1), 27–34 (1947)

    Article  Google Scholar 

  3. Leonov, A.I.: The slow stationary flow of a viscous fluid about a porous sphere. J. Appl. Maths. Mech. 26, 564–566 (1962)

    Article  MathSciNet  Google Scholar 

  4. Joseph, D.D., Tao, L.N.: The effect of permeability on the slow motion of a porous sphere. Z. Angew. Math. Mech. 44, 361–364 (1964)

    Article  Google Scholar 

  5. Sutherland, D.N., Tan, C.T.: Sedimentation of a porous sphere. Chem. Eng. Sci. 25, 1948–1950 (1970)

    Article  Google Scholar 

  6. Neale, G., Epstein, N.: Creeping flow relative to permeable spheres. Chem. Eng. Sci. 28, 1865–1874 (1973)

    Article  Google Scholar 

  7. Jones, I.P.: Low Reynolds number flow past a porous spherical shell. Proc. Camb. Philos. Soc 73, 231 (1973)

    Article  Google Scholar 

  8. Feng, Z.G., Michaelides, E.E.: Motion of a permeable sphere at finite but small Reynolds numbers. Phys. Fluid. 10, 6 (1998)

    Article  Google Scholar 

  9. Jager, W., Mikelic, A.: On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Math. 60(4), 1111–1127 (2000)

    Article  MathSciNet  Google Scholar 

  10. Vainshtein, P., Shapiro, M., Gutfinger, C.: Creeping flow past and within a permeable spheroid. Int. J. Multiph. 28, 1945–1963 (2002)

    Article  Google Scholar 

  11. Srinivasacharya, D.: Flow past a porous approximate spherical shell. Z. Angew. Math. Phys. 58, 646–658 (2007)

    Article  MathSciNet  Google Scholar 

  12. Beavers, G.S., Joseph, D.D.: Boundary condition at a naturally permeable wall. J. Fluid Mech. 30, 197 (1967)

    Article  Google Scholar 

  13. Urquiza, J.M., N’Dri, D., Garon, A., Delfour, M.C.: Coupling Stokes and Darcy equations. Appl. Numer. Math. 58, 525–538 (2008)

    Article  MathSciNet  Google Scholar 

  14. Shapovalov, V.M.: Viscous fluid flow around a semipermeable sphere. J. Appl. Mech. Tech. Phys. 50(4), 584–588 (2009)

    Article  Google Scholar 

  15. Cao, Y., Gunzburger, M., Hua, F., Wang, X.: Coupled Stokes–Darcy model with Beavers–Joseph interface boundary condition. Commun. Math. Sci. 8(1), 1–25 (2010)

    Article  MathSciNet  Google Scholar 

  16. Vereshchagin, A.S., Dolgushev, S.V.: Low velocity viscous incompressible fluid flow around a hollow porous sphere. J. Appl. Mech. Techn. Phys. 52(3), 406–414 (2011)

    Article  Google Scholar 

  17. Prakash, J., Raja Sekhar, G.P., Kohr, M.: Stokes flow of an assemblage of porous particles: stress jump condition. Z. Angew. Math. Phys. 62, 1027–1046 (2011)

    Article  MathSciNet  Google Scholar 

  18. Prakash, J., Raja Sekhar, G.P.: Estimation of the dynamic permeability of an assembly of permeable spherical porous particles using the cell model. J. Eng. Math. 80, 63–73 (2013)

    Article  MathSciNet  Google Scholar 

  19. Saffman, P.G.: On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 50, 93 (1971)

    Article  Google Scholar 

  20. Saad, E.I.: Stokes flow past an assemblage of axisymmetric porous spheroidal particle in cell models. J. Porous Media. 15(9), 849–866 (2012)

    Article  Google Scholar 

  21. Chen, P.C.: Fluid extraction from porous media by a slender permeable prolate-spheroid. Extreme Mech. Lett. 4, 124–130 (2015)

    Article  Google Scholar 

  22. Rasoulzadeh, M., Kuchuk, F.J.: Effective permeability of a porous medium with spherical and spheroidal vug and fracture inclusion. Transp. Porous Med. 116, 613–644 (2017)

    Article  MathSciNet  Google Scholar 

  23. Tiwari, A., Yadav, P.K., Singh, P.: Stokes flow through assemblage of nonhomogeneous porous cylindrical particle using cell model technique. Natl. Acad. Sci. Lett. 4(1), 53–57 (2018)

    Article  Google Scholar 

  24. Khabthani, S., Sellier, A., Feuillebois, F.: Lubricating motion of a sphere towards a thin porous slab with Saffman slip condition. J. Fluid Mech. 867, 949–968 (2019)

    Article  MathSciNet  Google Scholar 

  25. Lai, M.C., Shiue, M.C., Ong, K.C.: A simple projection method for the coupled Navier–Stokes and Darcy flows. Comput. Geosci. 23, 21–33 (2019)

    Article  MathSciNet  Google Scholar 

  26. Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics. Prentice-Hall, Englewood Cliffs, NJ (1965)

    MATH  Google Scholar 

  27. Nield, D.A., Bejan, A.: Convection in Porous Media. Studies in Applied Mathematics, 3rd edn. Springer, New York (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Prasad Madasu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

On applying the Eqs. (21) to (23) upto first order of \(\alpha _{m}\), we obtain the following equations

$$\begin{aligned}&\left( 1+a_2+b_2-c_2\right) P_1{(\zeta )}+\alpha _{m}(2-a_2+b_2-2c_2)[\vartheta _{m}{(\zeta )}P_1{(\zeta )}+\vartheta _{2}{(\zeta )}P_{m-1}{(\zeta )}] \nonumber \\&\quad +\sum _{n=3}^{\infty }(A_n+B_n-C_n)P_{n-1}{(\zeta )}=0 \end{aligned}$$
(48)
$$\begin{aligned}&\left( (6\lambda +\alpha )a_2-\alpha b_2-2\alpha \right) \vartheta _{2}{(\zeta )}+\alpha _{m}\vartheta _2{(\zeta )}\left[ -((18\lambda + 2\alpha )a_2+2\alpha )\vartheta _{m}{(\zeta )}\right. \nonumber \\&\quad +\left. \left( (18\lambda +2\alpha )a_2+(6\lambda +2\alpha )2b_2+2\alpha \right) P_{1}{(\zeta )}P_{m-1}{(\zeta )}\right] \nonumber \\&\quad -\sum _{n=3}^{\infty }[\left( 2(1-n^2)\lambda +\alpha (1-n)\right) A_n+\left( 2n(2-n)\lambda +\alpha (3-n)\right) B_n]\vartheta _{n}{(\zeta )}=0\qquad \end{aligned}$$
(49)
$$\begin{aligned}&(6a_2+3b_2+\alpha ^2c_2)P_1{(\zeta )}+\alpha _{m}[-12a_2-6b_2+\alpha ^2c_2]\vartheta _{m}{(\zeta )}P_1{(\zeta )}\nonumber \\&\quad -12a_2\alpha _{m}[\vartheta _{2}{(\zeta )}P_{m-1}{(\zeta )}+\vartheta _{m}{(\zeta )}P_{1}{(\zeta )}] \nonumber \\&\quad +\sum _{n=3}^{\infty }\left[ 2(n+1)A_n+\frac{2(n^2+n-3)}{n}B_n+\frac{\alpha ^2}{n-1}C_n\right] P_{n-1}{(\zeta )}=0 \end{aligned}$$
(50)

Solving the leading terms of Eqs. (48) to (50), we get the values of \(a_2\)\(b_2\), and \(c_2\) as

$$\begin{aligned} a_2= & {} \frac{\alpha ({{\alpha }^{2}}+6) }{6\left( {{\alpha }^{2}}+3\right) \lambda +\alpha (2 {{\alpha }^{2}}+9) } \end{aligned}$$
(51)
$$\begin{aligned} b_2= & {} -\frac{3\alpha (2 {{\alpha }} \lambda +{{\alpha }^{2}}+4) }{6\left( {{\alpha }^{2}}+3\right) \lambda +\alpha (2 {{\alpha }^{2}}+9) } \end{aligned}$$
(52)
$$\begin{aligned} c_2= & {} \frac{3(6 \lambda +\alpha ) }{6\left( {{\alpha }^{2}}+3\right) \lambda +\alpha (2 {{\alpha }^{2}}+9) } \end{aligned}$$
(53)

In order to calculate other arbitrary constants \(A_n\)\(B_n\),  and \(C_n\),we require the following identities

$$\begin{aligned} \vartheta _{m}{(\zeta )}\vartheta _{2}{(\zeta )}= & {} -\frac{(m-2)(m-3)}{2(2m-1)(2m-3)}\vartheta _{m-2}{(\zeta )}\nonumber \\&+\frac{m(m-1)}{(2m+1)(2m-3)}\vartheta _{m}{(\zeta )} \nonumber \\&-\frac{(m+1)(m+2)}{2(2m-1)(2m+1)}\vartheta _{m+2}{(\zeta )} \end{aligned}$$
(54)
$$\begin{aligned} \vartheta _{m}{(\zeta )}P_1{(\zeta )}+P_{m-1}{(\zeta )}\vartheta _{2}{(\zeta )}= & {} -\frac{(m-2)(m-3)}{2(2m-1)(2m-3)}P_{m-3}{(\zeta )}\nonumber \\&+\frac{m(m-1)}{(2m+1)(2m-3)}P_{m-1}{(\zeta )}\nonumber \\&-\frac{(m+1)(m+2)}{2(2m-1)(2m+1)}P_{m+1}{(\zeta )} \end{aligned}$$
(55)
$$\begin{aligned} P_{1}{(\zeta )}\vartheta _{2}{(\zeta )}P_{m-1}{(\zeta )}= & {} -\frac{(m-1)(m-2)(m-3)}{2(2m-1)(2m-3)}\vartheta _{m-2}{(\zeta )}\nonumber \\&+\frac{m(m-1)}{2(2m+1)(2m-3)}\vartheta _{m}{(\zeta )}\nonumber \\&+\frac{m(m+1)(m+2)}{2(2m-1)(2m+1)}\vartheta _{m+2}{(\zeta )} \end{aligned}$$
(56)
$$\begin{aligned} \vartheta _{m}{(\zeta )}P_1{(\zeta )}= & {} \frac{(m-2)}{(2m-1)(2m-3)}P_{m-3}{(\zeta )}\nonumber \\&+\frac{1}{(2m+1)(2m-3)}P_{m-1}{(\zeta )}\nonumber \\&-\frac{(m+1)}{(2m-1)(2m+1)}P_{m+1}{(\zeta )} \end{aligned}$$
(57)

By taking the use of these identities in Eqs (43) to (45) we see that the values of \(A_n\), \(B_n\) and \(C_n\) \(=0\) for \(n\ne m-2,m,m+2\) and for \(n=m-2,m,m+2\) we have the following expressions

$$\begin{aligned}&A_n+B_n-C_n+\xi _1 {{\overline{a}}}_n=0 \end{aligned}$$
(58)
$$\begin{aligned}&\left( 2(1-n^2)\lambda +\alpha (1-n)\right) A_n+\left( 2n(2-n)\lambda +\alpha (3-n)\right) B_n+\xi _2 {{\overline{a}}}_n+\xi _3 {{\overline{b}}}_n=0\qquad \end{aligned}$$
(59)
$$\begin{aligned}&2(n+1)A_n+\frac{2(n^2+n-3)}{n}B_n+\frac{\alpha ^2}{n-1}C_n+\xi _4 {{\overline{c}}}_n+\xi _5 {{\overline{a}}}_n=0 \end{aligned}$$
(60)

where

$$\begin{aligned}&\xi _1=2-a_2+b_2-2c_2 \\&\xi _2=-(18\lambda + 2\alpha )a_2-2\alpha \\&\xi _3=(18\lambda +2\alpha )a_2+(6\lambda +2\alpha )2b_2+2\alpha \\&\xi _4=-12a_2-6b_2+\alpha ^2 c_2 \\&\xi _5=-12a_2 \end{aligned}$$

and

$$\begin{aligned} {{\overline{a}}}_n= & {} \frac{n(n-1)\alpha _{n}}{(2n+1)(2n-3)} \end{aligned}$$
(61)
$$\begin{aligned} {{\overline{b}}}_n= & {} \frac{n(n-1)\alpha _{n}}{2(2n+1)(2n-3)} \end{aligned}$$
(62)
$$\begin{aligned} {{\overline{c}}}_n= & {} \frac{\alpha _{n}}{(2n+1)(2n-3)} \end{aligned}$$
(63)

The expression for \(B_2\) is

$$\begin{aligned} B_2=-\frac{6\alpha \varepsilon \, \left( 36 \alpha \, \left( {{\alpha }^{2}}+5\right) \, {{\lambda }^{2}}+12 \left( 2 {{\alpha }^{4}}+13 {{\alpha }^{2}}+12\right) \lambda +\alpha \, \left( 4 {{\alpha }^{4}}+33 {{\alpha }^{2}}+60\right) \right) }{5{{\left( 6 {{\alpha }^{2}} \lambda +18 \lambda +2 {{\alpha }^{3}}+9 \alpha \right) }^{2}}} \end{aligned}$$
(64)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madasu, K.P., Bucha, T. Steady Viscous Flow Around a Permeable Spheroidal Particle. Int. J. Appl. Comput. Math 5, 109 (2019). https://doi.org/10.1007/s40819-019-0692-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-019-0692-1

Keywords

Mathematics Subject Classification

Navigation