Skip to main content
Log in

Magnetohydrodynamic creeping flow around a weakly permeable spherical particle in cell models

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The present paper studies the impact of applied uniform transverse magnetic field on the flow of incompressible conducting fluid around a weakly permeable spherical particle bounded by a spherical container. Analytical solution of the problem is obtained using Happel and Kuwabara cell models. The concerned flow is parted in two regions, bounded fluid region and internal porous region, to be governed by Stokes and Darcy’s law respectively. At the interface between the fluid and the permeable region, the boundary conditions used are continuity of normal component of velocity, Saffman’s boundary condition and continuity of pressure. For the cell surface, Happel and Kuwabara models together with continuity in radial component of the velocity has been used. Expressions for drag force, hydrodynamic permeability and Kozeny constant acting on the spherical particle under magnetic effect are presented. Representation of hydrodynamic permeability for varying permeability parameters, particle volume fraction, slip parameter and Hartmann numbers are represented graphically. Also, the magnitude of Kozeny constant for weakly permeable and semipermeable sphere under a magnetic effect has been presented. In limiting cases many important results are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H P G Darcy, Proc. Roy. Soc. London Ser. 83, 357 (1910)

    Google Scholar 

  2. H C Brinkman, Appl. Sci. Res. A 1, 27 (1947)

    Article  Google Scholar 

  3. G S Beavers and D D Joseph, J. Fluid Mech.30, 197 (1967)

    Article  ADS  Google Scholar 

  4. P G Saffman, Studies Appl. Math. 50, 93 (1971)

    Article  Google Scholar 

  5. D D Joseph and L N Tao, J. Appl. Math. Mech. 44(8–9), 361 (1964)

    Google Scholar 

  6. M P Singh and J L Gupta, J. Appl. Math. Mech. 51(1), 27 (1971)

    Google Scholar 

  7. V M Shapovalov, J. Appl. Mech. Tech. Phys. 50(4), 584 (2009)

    Article  ADS  Google Scholar 

  8. J Happel and H Brenner, Low Reynolds number hydrodynamics (Prentice-Hall, Englewood Cliffs, NJ, 1965)

    MATH  Google Scholar 

  9. J Happel, AIChE J. 4, 197 (1958)

    Article  Google Scholar 

  10. S Kuwabara, J. Phys. Soc. Jpn 14, 527 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  11. G Dassios, M Hadjinicolaou, F A Coutelieris and A C Payatakes, Int. J. Eng. Sci.33(10), 1465 (1995)

    Article  Google Scholar 

  12. P Vainshtein, M Shapiro and C Gutfinger, Int. J. Multiph. Flow 28, 1945 (2002)

    Article  Google Scholar 

  13. H Ramkissoon and K Rahaman, Int. J. Eng. Sci. 41, 283 (2003)

    Article  Google Scholar 

  14. D Srinivasacharya, C R Mecanique 333(8), 612 (2005)

    Article  ADS  Google Scholar 

  15. S Senchenko and H J Keh, Phys. Fluids 18, 088 (2006)

    Article  Google Scholar 

  16. P K Yadav, A Tiwari, S Deo, A Filippov and S Vasin, Acta Mech. 215, 193 (2010)

    Article  Google Scholar 

  17. J Prakash, G P Raja Sekhar and M Kohr, Z. Angew. Math. Phys. 62, 1027 (2011)

    Article  MathSciNet  Google Scholar 

  18. E I Saad, J. Porous Media 15(9), 849 (2012)

    Article  Google Scholar 

  19. M K Prasad and M Kaur, J. Braz. Soc. Mech. Sci. Eng. 40, 114 (2018)

    Article  Google Scholar 

  20. M K Prasad and T Bucha, Int. J. Appl. Comput. Math. 5, 109 (2019)

    Article  Google Scholar 

  21. R Krishnan and P Shukla, Int. J. Fluid Mech. Res. 46(3), 219 (2019)

    Article  Google Scholar 

  22. D Yu Khanukaeva, A N Filippov, P K Yadav and A Tiwari, Eur. J. Mech. B Fluids 76, 73 (2019)

    Article  MathSciNet  Google Scholar 

  23. S Globe, Phys. Fluids 2, 404 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  24. R R Gold, J. Fluid. Mech. 13(4), 505 (1962)

    Article  MathSciNet  ADS  Google Scholar 

  25. N Rudraiah, B K Ramaiah and B M Rajasekhar, Int. J. Eng. Sci. 13, 1 (1975)

    Article  Google Scholar 

  26. H P Mazumdar, U N Ganguly and S K Venkatesan, Indian J. Pure Appl. Math. 27(5), 519 (1996)

    Google Scholar 

  27. K Haldar and S N Ghosh, Indian J. Pure Appl. Math. 25, 345 (1994)

    Google Scholar 

  28. K R Cramer and S I Pai, Magnetofluid dynamics for engineers and applied physicists (McGraw-Hills, New York, 1973)

    Google Scholar 

  29. P A Davidson, An introduction to magnetohydrodynamics (Cambridge University Press, 2001)

  30. G E Geindreau and J L Aurialt, J. Fluid Mech. 466, 343 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  31. V K Verma and S Datta, Adv. Theory Appl. Mech. 3(2), 53 (2010)

    Google Scholar 

  32. D V Jayalakshmamma, P A Dinesh and M Sankar, Mapana J. Sci. 10(2), 11 (2011)

    Article  Google Scholar 

  33. B G Srivastava and S Deo, Appl. Math. Computat. 219(17), 8959 (2013)

    Article  Google Scholar 

  34. V K Verma and S K Singh, J. Porous Media 18(9), 923 (2015)

    Article  Google Scholar 

  35. B G Srivastava, P K Yadav, S Deo, P K Singh and A Flippov, Colloid J. 76(6), 725 (2014)

    Article  Google Scholar 

  36. P K Yadav, S Deo, S P Singh and A Filippov, Colloid J. 79(1), 160 (2017)

    Article  Google Scholar 

  37. E I Saad, J. Porous Media 21(7), 637 (2018)

    Article  Google Scholar 

  38. M Kumar, G J Reddy and N Dalir, Pramana – J. Phys. 91: 60 (2018)

    Article  ADS  Google Scholar 

  39. K P Kashyap, O Ojjela and S K Das, Pramana – J. Phys. 92: 73 (2019)

    Article  Google Scholar 

  40. M K Prasad and T Bucha, Int. J. Appl. Comput. Math. 5, 98 (2019)

    Article  Google Scholar 

  41. M K Prasad and T Bucha, J. Braz. Soc. Mech. Sci. Eng. 41, 320 (2019)

    Article  Google Scholar 

  42. J Prakash and G P Raja Sekhar, J. Eng. Math. 80, 63 (2013)

    Article  Google Scholar 

  43. D A Nield and A Bejan, Convection in porous media (Springer, 2006)

  44. A Tiwari, P K Yadav and P Singh, Natl. Acad. Sci. Lett. 4(1), 53 (2018)

    Article  Google Scholar 

  45. S de Groot and P Mazur, Non-equilibrium thermodynamics (North Holland, Amsterdam; Wiley, New York, 1962)

    Google Scholar 

  46. S I Vasin and A N Filippov, Colloid J. 71(2), 141 (2009)

    Article  Google Scholar 

  47. S I Vasin, A N Filippov and V M Starov, Adv. Colloid Interface Sci. 139, 83 (2008)

    Article  Google Scholar 

  48. P C Carman, Flow of gases through porous media (Academic Press Inc., New York, 1956)

    MATH  Google Scholar 

  49. A S Kim and R Yuan, J. Mem. Sci. 249, 89 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Krishna Prasad.

Appendix

Appendix

$$\begin{aligned}&S_1=K_{1/2}(\alpha ), \quad S_2= K_{3/2}(\alpha ), \nonumber \\&S_3=K_{1/2}(\alpha /\eta ), \quad S_4= K_{3/2}(\alpha /\eta ), \nonumber \\&U_1=I_{1/2}(\alpha ), \quad U_2= I_{3/2}(\alpha ), \nonumber \\&U_3=I_{1/2}(\alpha /\eta ),\quad U_4= I_{3/2}(\alpha /\eta ), \nonumber \\&W_1= S_1U_4+S_4U_1,\quad W_2=S_2U_4-S_4U_2, \nonumber \\&W_3=W_1\alpha +W_2,\quad W_4= W_1\alpha +3W_2,\nonumber \\&W_5= S_1U_2+S_2U_1,\quad W_6=S_3U_1-S_1U_3,\nonumber \\&W_7= S_3U_2+S_2U_3,\quad W_8= S_3U_4+S_4U_3,\nonumber \\&W_9= W_6\alpha -3W_7,\quad W_{10}=W_5\eta +W_8, \nonumber \\&W_{11}=W_6\alpha - W_7,\quad W_{12}= W_9\beta ^2-W_{11}\alpha ^2,\nonumber \\&W_{13}=W_3\alpha ^2- W_4\beta ^2,\quad W_{14}=2 W_1\beta ^{2}+W_3 \,\alpha ,\nonumber \\&W_{15}=2W_{6}\,\beta ^2+ W_{11}\alpha ,\quad W_{16}=-2W_{12}\,\eta +W_{13}\alpha , \nonumber \\&W_{17}=2W_{16}\,\eta ^3{+}6W_{14}\,\eta ^2,\quad W_{18}=2\alpha \eta W_{15}+\alpha ^2 W_{14}, \nonumber \\&W_{19}=W_2\alpha ^2+W_4,\quad W_{20}={W_9}-{W_7} {{\alpha }^{2}}, \nonumber \\&W_{21}={W_2}\alpha +{W_4}, \quad W_{22}={W_6}-{W_7} \alpha , \nonumber \\&W_{23}=2 W_{21}{{\beta }^{2}}+{W_{19}}\, \alpha , \quad W_{24}=2 W _{22}\, {{\beta }^{2}}+{W_{20}} \,\alpha , \nonumber \\&Z=6\eta ^2+\alpha ^2, \nonumber \\&\Delta _{1}=W_{19}{\beta }^{2}-2{W_2}\, {\alpha }^{2},\nonumber \\&\Delta _{2}=W_{19}( 2( \beta ^2-\alpha ^2) {\eta }^{3}-{{\alpha }^{2}}) -2 \alpha \left( {W_2} \alpha +{W_1}\right) {{\beta }^{2}}, \nonumber \\&\Delta _{3}=W_{17}+W_{18},\nonumber \\&\Delta _{4}=W_{4}Z+2W_{9}\alpha \eta ,\nonumber \\&\Delta _{5}=2 \alpha ( {W_{20}} {{\beta }^{2}}+2 {W_7} {{\alpha }^{2}}) \eta +Z {\Delta _1}, \nonumber \\&\Delta _6=-4 {W_{20}} ( {{\beta }^{2}}{-}{{\alpha }^{2}}) {{\eta }^{4}}{+}6 {W_{23}} {{\eta }^{2}}{+}2 {W_{24}} \alpha \eta -{\Delta _2} \alpha , \nonumber \\&\Delta _7=-12 ( { W }_5\,{{\beta }^{2}} {{\eta }^{4}}+{W_8}( {{\beta }^{2}}-{{\alpha }^{2}}){{\eta }^{3}}),\nonumber \\&\Delta _8= {W_1}{Z}-2 {W_9}{{\eta }^{4}}{-}\eta ( {W_4} \alpha {{\eta }^{2}}{+}6 {W_{10}}\, {{\eta }^{3/2}}-2 {W_6} \alpha ). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, M.K., Bucha, T. Magnetohydrodynamic creeping flow around a weakly permeable spherical particle in cell models. Pramana - J Phys 94, 24 (2020). https://doi.org/10.1007/s12043-019-1892-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1892-2

Keywords

PACS Nos

Navigation