Skip to main content
Log in

MHD Viscous Flow Past a Weakly Permeable Cylinder Using Happel and Kuwabara Cell Models

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

The present work deals with studying magneto-viscous fluid flow around a weakly permeable cylinder bounded by a cylindrical container under the effect of an applied magnetic field. Based on Happel and Kuwabara cell model technique, an analytical solution of the problem is evaluated. Considered flow is separated into the outer viscous fluid region and inner permeable region governed by modified Stoke’s equations and modified Darcy’s law, respectively. Applicable boundary conditions at the fluid porous interface are continuity of normal component of velocity, Saffman’s slip condition together with the continuity of pressure. The expressions for the drag, hydrodynamic permeability, and Kozeny constant for the permeable cylinder are achieved in this analysis. Numerical values of Kozeny constant against porosity are presented, and new results are also acquired. Analytical and numerical results that correspond to the earlier published works are obtained as reduction cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arjun KS, Rakesh K (2020) Heat transfer in magnetohydrodynamic nano fluid flow past a circular cylinder. Phys Fluids 32:045112

    Google Scholar 

  • Beavers GS, Joseph DD (1967) Boundary conditions at a naturally permeable wall. J Fluid Mech 30:197

    Google Scholar 

  • Brinkman HC (1947) A calculation of viscous force exerted by flowing fluid on dense swarm of particles. Appl Sci Res A1:27–34

    MATH  Google Scholar 

  • Brown GR (1975) Doctoral dissertation. The Institute of Paper Chemistry

  • Carman PC (1956) Flow of gases through porous media. Academic Press Inc., New York

    MATH  Google Scholar 

  • Darcy HPG (1910) Les fontaines publiques de la ville de dijon. Proc R Soc Lond Ser 83:357–369

    Google Scholar 

  • Datta S, Shukla M (2003) Drag on flow past a cylinder with slip. Bull Calcutta Math Soc 95(1):63–72

    MathSciNet  MATH  Google Scholar 

  • Deo S, Yadav PK (2008) Stokes flow past a swarm of porous nano cylindrical particles enclosing a solid core. Int J Math Math Sci. https://doi.org/10.1155/2008/651910

    Article  MATH  Google Scholar 

  • Deo S, Filippov AN, Tiwari A, Vasin SI, Starov VM (2011) Hydrodynamic permeability of aggregates of porous particles with an impermeable core. Adv Colloid Interface Sci 164:21–37

    Google Scholar 

  • Deo S, Maurya PK, Filippov AN (2019) Hydrodynamic permeability of a membrane built up by non-homogenous porous cylindrical particles. Membr Membr Technol 1(6):394–405

    Google Scholar 

  • de Groot S, Mazur P (1962) Non-equilibrium thermodynamics. Wiley, New York

    MATH  Google Scholar 

  • Filippov AN, Vasin SI, Starov VM (2006) Mathematical modeling of the hydrodynamic permeability of a membrane built up from porous particles with a permeable shell. Colloids Surf A Physicochem Eng Asp 282:229–240

    Google Scholar 

  • Geindreau GE, Aurialt JL (2002) Magnetohydrodynamic flows in porous media. J Fluid Mech 466:343–363

    MathSciNet  MATH  Google Scholar 

  • Globe S (1959) Laminar steady-state magnetohydrodynamic flow in an annular channel. Phys Fluids 2:404–407

    MathSciNet  MATH  Google Scholar 

  • Gold RR (1962) Magnetohydrodynamic pipe flow part-I. J Fluid Mech 13:505–512

    MathSciNet  MATH  Google Scholar 

  • Haldar K, Ghosh SN (1994) Effect of a magnetic field on blood flow through an intended tube in the presence of erythrocytes. J Pure Appl Math 25:345–352

    MATH  Google Scholar 

  • Happel J, Brenner H (1965) Low Reynolds number hydrodynamics. Prentice-Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  • Happel J (1958) Viscous flow relative to arrays of cylinders. AIChE J 4:197–201

    Google Scholar 

  • Jaiswal S, Yadav PK (2019) A micropolar-Newtonian blood flow model through a porous layered artery in the presence of a magnetic field. Phys Fluids 31:071901

    Google Scholar 

  • Khanukaeva DY, Filippov AN, Yadav PK, Tiwari A (2019) Creeping flow of micropolar fluid through a swarm of cylindrical cells with porous layer (membrane). J Mol Liq 294:111558

    Google Scholar 

  • Kim AS, Yuan R (2005) A new model for calculating specific resistance of aggregated colloidal cake layers in membrane filtration processes. J Membr Sci 249(1–2):89–101

    Google Scholar 

  • Kuwabara S (1959) The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers. J Phys Soc Jpn 14:527–532

    MathSciNet  Google Scholar 

  • Madasu KP (2019) Slow steady flow past a porous cylinder with radially varying permeability using cell models. Int J Appl Comput Math 5:92

    MathSciNet  MATH  Google Scholar 

  • Mardanov RF, Zaripov SK, Maklakov DV (2020) Two-dimensional Stokes flows in porous medium composed of a large number of circular inclusions. Eng Anal Bound Elem 113:204–218

    MathSciNet  MATH  Google Scholar 

  • Mazumdar HP, Ganguly UN, Vankatesan SK (1996) Some effect of a magnetic field on the flow of a Newtonian fluid through a circular tube. Ind J Pure Appl Math 27(5):519–524

    MATH  Google Scholar 

  • Nield DA, Bejan A (2006) Convection in porous media. Springer, Berlin

    MATH  Google Scholar 

  • Pop I, Cheng P (1992) Flow past a circular cylinder embedded in a porous medium based on the Brinkman model. Int J Eng Sci 30:257–262

    MATH  Google Scholar 

  • Palaniappan D, Archana K, Khan SK (1997) Two-dimensional creeping flows with permeable cylinders. Z Angew Math Mech 77(10):791–796

    MathSciNet  MATH  Google Scholar 

  • Prakash J, Raja Sekhar GP (2013) Estimation of the dynamic permeability of an assembly of permeable spherical porous particles using the cell model. J Eng Math 80(1):63–73

    MathSciNet  MATH  Google Scholar 

  • Prasad MK, Srinivasacharya D (2017) Micropolar fluid flow through a cylinder and a sphere embedded in a porous medium. Int J Fluid Mech Res 44(3):229–240

    Google Scholar 

  • Prasad MK, Bucha T (2019a) Cell model of viscous flow past a semipermeable cylinder. IJATCA Spec Issue 1(1):101–105

    Google Scholar 

  • Prasad MK, Bucha T (2019b) Impact of magnetic field on flow past cylindrical shell using cell model. J Braz Soc Mech Sci Eng 41:320

    Google Scholar 

  • Prasad MK, Bucha T (2019c) Effect of magnetic field on the steady viscous fluid flow around a semipermeable spherical particle. Int J Appl Comput Math 5:98

    MathSciNet  MATH  Google Scholar 

  • Prasad MK, Bucha T (2019d) Creeping flow of fluid sphere contained in spherical envelope: magnetic effect. SN Appl Sci 1(12):1594

    Google Scholar 

  • Prasad MK, Bucha T (2020) Magnetohydrodynamic creeping flow around a weakly permeable spherical particle in cell models. Pramana J Phys 94:24

    Google Scholar 

  • Saffman PG (1971) On the boundary condition at the surface of a porous medium. Study Appl Math 50:93

    MATH  Google Scholar 

  • Saad EI (2018) Effect of magnetic fields on the motion of porous particles for Happel and Kuwabara models. J Porous Media 21(7):637–664

    Google Scholar 

  • Shapovalov VM (2009) Viscous fluid flow around a semipermeable particle. J Appl Mech Tech Phys 50(4):584–588

    MATH  Google Scholar 

  • Sherief HH, Faltas MS, Ashmawy EA, Abdel-Hamied AM (2014) Parallel and perpendicular flow of a micropolar fluid between slip cylinder and coaxial fictitious cylindrical shell in cell models. Eur Phys J Plus 129:217

    Google Scholar 

  • Spielman L, Goren SL (1968) Model for predicting pressure drop and filtration efficiency in fibrous media. Environ Sci Technol 2:279–287

    Google Scholar 

  • Srivastava BG, Deo S (2013) Effect of magnetic field on the viscous fluid flow in a channel filled with porous medium of variable permeability. Appl Math Comput 219:8959–8964

    MathSciNet  MATH  Google Scholar 

  • Tiwari A, Deo S, Fillippov A (2012) Effect of magnetic field on the hydrodynamic permeability of a membrane. Colloid J 74(4):512–522

    Google Scholar 

  • Vasin S, Fillipop A (2009) Cell models for flows in concentrated media composed of rigid impenetrable cylinders covered with a porous layer. Colloid J 71(2):141–155

    Google Scholar 

  • Verma VK, Singh SK (2015) Magnetohydrodynamic flow in a circular channel filled with a porous medium. J Porous Media 18:923–928

    Google Scholar 

  • Yadav PK (2018) Motion through a non-homogenous porous medium: hydrodynamic permeability of a membrane composed of cylindrical particles. Eur Phys Plus 133:1

    Google Scholar 

  • Yadav PK, Jaiswal S, Puchakatla JY (2019) Micropolar fluid flow through the membrane composed of impermeable cylindrical particles coated by porous layer under the effect of magnetic field. Math Methods Appl Sci 43(4):1925–1937

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Prasad Madasu.

Appendix

Appendix

$$\begin{aligned}&w_1=S_1U_4+S_4U_1, \quad w_2=S_2U_4-S_4U_2, \quad w_3=S_1U_2+S_2U_1,\\&w_4=S_1U_3-S_3U_1, \quad w_5=S_2U_3+S_3U_2, \quad w_6=S_3U_4+S_4U_3,\\&w_7=w_1\alpha +w_2, \quad w_8=w_1\alpha +2w_2, \quad w_9=w_4\alpha +2w_5, \\&w_{10}=w_4\alpha +w_5, \quad w_{11}=((w_9-2w_3)\beta ^2-\alpha ^2w_{10}),\\&w_{12}=((w_8\alpha -4(w_1-w_6))\beta ^2-w_7\alpha (\alpha ^2+4)),\\&w_{13}=(w_{10}\alpha +w_4\beta ^2),\quad w_{14}=\alpha ^2(w_1\beta ^2+w_7\alpha ),\\&w_{15}=w_2{\alpha }^{2}+w_1 \alpha +2w_2,\quad w_{16}=w_2{\alpha }+w_1,\\&w_{17}=w_5{\alpha }+w_4,\\&w_{18}=\left( {w_5}{{\alpha }^{2}}+{w_9}-2{w_3}\right) {{\beta }^{2}}-{w_5}{{\alpha }^{4}}-{w_4}{{\alpha }^{3}}-2{w_5}\, {{\alpha }^{2}},\\&w_{19}=\left( -w_{16}\, {{\alpha }^{2}}+2{w_2} \alpha -4{w_6}+4 {w_1}\right) \, {{\beta }^{2}}+{w_2}\, {{\alpha }^{5}}+{w_1}\, {{\alpha }^{4}}\\&\quad+\,6 {w_2}{{\alpha }^{3}}+4 \left( {w_6}+{w_1}\right) \, {{\alpha }^{2}}+8{w_2}\alpha ,\\&w_{20}= w_{17}\, {{\beta }^{2}}+w_{17}{{\alpha }^{2}}+2 w_{5} \alpha , \quad w_{21}= \left( w_9-2w_3\right) {{\beta }^{2}}-w_{10}{{\alpha }^{2}}, \\&w_{22} = \left( -{w_8} \alpha -4{w_6}+4{w_1}\right) {{\beta }^{2}}+{w_7}\, {{\alpha }^{3}}+4{w_7}\alpha ,\\&\Delta _1 = 2 {w_3}\, {{\alpha }^{3}}{{\lambda }^{3}}+4 ({w_2}\, {{\alpha }^{2}}-w_{15}\, {{\beta }^{2}}) {{\lambda }^{2}}+2 \alpha ( \left( {w_5} {{\alpha }^{2}}+{w9}\right) \, {{\beta }^{2}} \\ &\quad -\,{w_5}\, {{\alpha }^{2}}) \lambda -{{\alpha }^{2}}\, \left( w_{16} \alpha +2{w_2}\right) \, {{\beta }^{2}}+{w_2} {{\alpha }^{4}},\\&\Delta _2 = 2 {w_3}{{\alpha }^{3}}{{\lambda }^{3}}-4{w_8}\,{{\beta }^{2}}\, {{\lambda }^{2}}+2 {w_9} \alpha \, {{\beta }^{2}} \lambda -{w_8}{{\alpha }^{2}}\, {{\beta }^{2}}, \\&\Delta _3 = 2 w_{18}{{\lambda }^{3}}+w_{19} {{\lambda }^{2}}-2 w_{20} \alpha \lambda +w_{16}\, {{\alpha }^{2}}\, {{\beta }^{2}}+w_{16} {{\alpha }^{4}}+2{w_2} {{\alpha }^{3}}, \\&\Delta _4 = 2w_{21}\, {{\lambda }^{3}}+w_{22}\, {{\lambda }^{2}}-2 \alpha \, \left( {w_4}\, {{\beta }^{2}}+w_{10} \alpha \right) \lambda +w_{1}\, {{\alpha }^{2}}\, {{\beta }^{2}}+w_{7}\, {{\alpha }^{3}}, \\&\Delta _5 = w_{15}\, \left( {{\beta }^{2}}-{{\alpha }^{2}}\right) \, {{\lambda }^{2}}-w_{16} \alpha \, \left( {{\beta }^{2}}+{{\alpha }^{2}}\right) -2 w_{2}\, {{\alpha }^{2}}, \\&\Delta _6 = \left( {w_8}\,{{\beta }^{2}}-{w_7}\, {{\alpha }^{2}}\right) {{\lambda }^{2}}-{w_{14}}{\alpha }^{-1}, \quad \Delta _7=w_{15}{{\beta }^{2}}-{w_2}\, {{\alpha }^{2}}, \\&\Delta _8 = 2( w_9-2w_3)\lambda ^3-( w_8\alpha -4(w_1-w_6)) \lambda ^2-2w_4\alpha \lambda +w_1 \alpha ^2,\\&\Delta _9 = (2w_{11}\lambda ^3-w_{12}\lambda ^2-2\alpha w_{13}\lambda +w_{14}),\\&S_1=K_{0}(\alpha ),\, S_2 = K_{1}(\alpha ),\,S_3=K_{0}(\alpha /\lambda ),\,S_4= K_{1}(\alpha /\lambda ),\\&U_1=I_{0}(\alpha ),\, U_2 = I_{1}(\alpha ), \,U_3=I_{0}(\alpha /\lambda ),\, U_4= I_{1}(\alpha /\lambda ). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madasu, K., Bucha, T. MHD Viscous Flow Past a Weakly Permeable Cylinder Using Happel and Kuwabara Cell Models. Iran J Sci Technol Trans Sci 44, 1063–1073 (2020). https://doi.org/10.1007/s40995-020-00894-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-020-00894-4

Keywords

Navigation