Skip to main content
Log in

Impact of Magnetic Field on the Flow of a Conducting Fluid Past an Impervious Spheroid Embedded in Porous Medium

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The majority of the previous studies analyzed the flow of fluid around the perfect sphere however the slight deformations in the shape of the particle are observed in nature. The motivation of the present work is to investigate the impact of MHD flow on slightly deformed sphere embedded in unbounded porous medium. The stream function for the flow field is calculated in terms of Bessel and Gegenbauer functions. As a boundary conditions, vanishing of normal and tangential component of velocity are applied. The resistance force is evaluated past an impermeable spheroid. As a special case, we consider an electrically conducting fluid motion past a rigid oblate spheroid embedded in a porous medium. Also, the expression for non-dimensional drag and dimensionless shearing stress are computed and its variation with Hartmann number, permeability, and deformation parameters are depicted graphically. The flow patterns of the streamline are represented graphically along the axial direction of the spheroidal particles. A number of specific cases are developed and compared to earlier research, demonstrating that our approach is valid. The results show that the magnetic field increases the resistance on the oblate spheroid. The investigation of the current study may be beneficial in the delivery of medications to the desired location, the medical treatment of tumors, cancer, and others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

Abbreviations

\(\mathbf{q}\) :

Fluid velocity

\(p\) :

Pressure

\(\mathbf{F}\) :

Magnetic force

\(\psi \) :

Stokes stream function of the fluid flow

U:

Uniform flow

\(d\) :

Equatorial radius of oblate spheroid

\(k\) :

Permeability of the fluid

\(\mathbf{J}\) :

Electric current density

\(\mathbf{H}\) :

Magnetic field intensity

\(\mu \) :

Coefficient of viscosity

\(\alpha \) :

Non-negative Hartmann number

\(\epsilon \) :

Deformation parameter

\(\sigma \) :

Electric conductivity of the fluid

\({D}_{N}\) :

Non-dimensional drag

\({H}_{0}\) :

Magnetic field component

\({\mu }_{h}\) :

Magnetic permeability

\({\mathrm{F}}_{\mathrm{D}}\) :

Drag force

\({G}_{n}(\zeta )\) :

Gegenbauer function

\({P}_{n}\left(\zeta \right)\) :

Legendre polynomial

\({T}_{r\zeta }\) :

Tangential stress

\({T}_{rr}\) :

Normal stress

\({q}_{r}, {q}_{\theta }\) :

Component of fluid velocity in spherical coordinates

References

  1. Darcy, H.P.G.: Les fontaines publiques de la ville de Dijon, Paris, V. Dalmont (1856)

  2. Brinkman, H.C.: A calculation of viscous force exerted by flowing fluid on dense swarm of particles. Appl. Sci. Res. A1, 27–34 (1947)

    MATH  Google Scholar 

  3. Tam, C.K.W.: The drag on a cloud of spherical particles in low Reynolds number flow. J. Fluid Mech. 38, 537–546 (1969)

    Article  Google Scholar 

  4. Lundgren, T.S.: Slow flow through stationary random beds and suspensions of spheres. J. Fluid Mech. 51, 273–299 (1972)

    Article  Google Scholar 

  5. Yu, Q., Kaloni, P.N.: A cartesian-tensor solution of the Brinkman equation. J. Eng. Math. 22, 177–188 (1988)

    Article  MathSciNet  Google Scholar 

  6. Padmavathi, B.S., Amaranath, T., Nigam, S.D.: Stokes flow past a porous sphere using Brinkman’s model. Z. Angew. Math. Phys. 44(5), 929–939 (1993)

    Article  MathSciNet  Google Scholar 

  7. Barman, B.: Flow of a Newtonian fluid past an impervious sphere embedded in a porous medium. Indian J. Pure Appl. Math. 27, 1249–1256 (1996)

    MATH  Google Scholar 

  8. Pop, I., Ingham, D.B.: Flow past a sphere embedded in a porous medium based on the Brinkman model. Int. Commun. Heat Mass Transf. 23(6), 865–874 (1996)

    Article  Google Scholar 

  9. Srinivasacharya, D., Ramana Murthy, J.V.: Flow past an axisymmetric body embedded in a saturated porous medium. C. R. Mec. 330(6), 417–423 (2002)

    Article  Google Scholar 

  10. Yadav, P.K., Tiwari, A., Deo, S., Filippov, A., Vasin, S.: Hydrodynamic permeability of membranes built up by spherical particles covered by porous shells: effect of stress jump condition. Acta Mech. 215(1), 193–209 (2010)

    Article  Google Scholar 

  11. Deo, S., Gupta, B.R.: Drag on a porous sphere embedded in another porous medium. J. Porous Med. 13(11), 1009–1016 (2010)

    Article  Google Scholar 

  12. Yadav, P.K., Deo, S.: Stokes flow past a porous spheroid embedded in another porous medium. Meccanica 47(6), 1499–1516 (2012)

    Article  MathSciNet  Google Scholar 

  13. Srinivasacharya, D., Madasu, K.P.: Axisymmetric creeping flow past a porous approximate sphere with an impermeable core. Eur. Phys. J. Plus 128(1), 1–9 (2013)

    Article  Google Scholar 

  14. Jaiswal, B.R., Gupta, B.R.: Wall effects on Reiner-Rivlin liquid spheroid. Appl. Comput. Mech. 8, 157–176 (2014)

    Google Scholar 

  15. Juncu, G.A.: Numerical study of the flow past an impermeable sphere embedded in a porous medium. Transp. Porous Med. 108(3), 555–579 (2015)

    Article  MathSciNet  Google Scholar 

  16. Prasad, M.K., Kaur, M.: Stokes flow of viscous fluid past a micropolar fluid spheroid. Adv. Appl. Math. Mech. 9(5), 1076–1093 (2017)

    Article  MathSciNet  Google Scholar 

  17. Yadav, P.K., Tiwari, A., Singh, P.: Hydrodynamic permeability of a membrane built up by spheroidal particles covered by porous layer. Acta Mech. 229, 1869–1892 (2018)

    Article  MathSciNet  Google Scholar 

  18. Tiwari, A., Yadav, P.K., Singh, P.: Stokes flow through assemblage of non-homogeneous porous cylindrical particle using cell model technique. Natl. Acad. Sci. Lett. 4(1), 53–57 (2018)

    Article  MathSciNet  Google Scholar 

  19. Krishna Prasad, M., Bucha, T.: Steady viscous flow around a permeable spheroidal particle. Int. J. Appl. Comput. Math. 5(4), 1–13 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Jaiswal, B.R.: Steady Stokes flow of a non-Newtonian Reiner-Rivlin fluid streaming over an approximate liquid spheroid. Appl. Comput. Mech. 14(2), 1–18 (2020)

    Article  MathSciNet  Google Scholar 

  21. Stewartson, K.: Motion of a sphere through a conducting fluid in the presence of a strong magnetic field. Math. Proc. Camb. Philos. Soc. 52(2), 301–316 (1956)

    Article  MathSciNet  Google Scholar 

  22. Devi, S.P.A., Raghavachar, M.R.: Magnetohydrodynamic stratified flow past a sphere. Inc. J. Eng. Sci. 20(10), 1169–1177 (1982)

    Article  Google Scholar 

  23. Davidson, P.A.: An Introduction to Magnetohydrodynamics. Cambridge University Press, London (2001)

    Book  Google Scholar 

  24. Geindreau, C., Auriault, J.L.: Magnetohydrodynamic flow through porous media. Comptes Rendus de l’Académie des Sciences - Series IIB - Mechanics 329(6), 445–450 (2001)

    Article  Google Scholar 

  25. Jayalakshmamma, D.V., Dinesh, P.A., Sankar, M.: Analytical study of creeping flow past a composite sphere: solid core with porous shell in presence of magnetic field. Mapana J. Sci. 10(2), 11–24 (2011)

    Article  Google Scholar 

  26. Tiwari, A., Deo, S., Filippov, A.N.: Effect of the magnetic field on the hydrodynamic permeability of a membrane. Colloid J. 74, 515–522 (2012)

    Article  Google Scholar 

  27. Srivastava, B.G., Yadav, P.K., Deo, S., Singh, P.K., Filippov, A.: Hydrodynamic permeability of a membrane composed of porous spherical particles in the presence of uniform magnetic field. Colloid J. 76(6), 725–738 (2014)

    Article  Google Scholar 

  28. Iyengar, T.K.V., Radhika, T.S.L.: Stokes flow of an incompressible micropolar fluid past a porous spheroid. Far East J. Appl. Math. 90(2), 115–147 (2015)

    Article  Google Scholar 

  29. Yadav, P.K., Deo, S., Singh, S.P., Filippov, A.: Effect of magnetic field on the hydrodynamic permeability of a membrane built up by porous spherical particles. Colloid J. 79(1), 160–171 (2017)

    Article  Google Scholar 

  30. Ansari, I.A., Deo, S.: Mgnetohydrodynamic viscous fluid flow past a porous sphere embedded in another porous medium. Spec. Top. Rev. Porous Med. 9(2), 191–200 (2018)

    Article  Google Scholar 

  31. Saad, E.I.: Effect of magnetic fields on the motion of porous particles for happel and Kuwabara models. J. Porous Med. 21(7), 637–664 (2018)

    Article  Google Scholar 

  32. Madasu, K.P., Bucha, T.: Effect of magnetic field on the steady viscous fluid flow around a semipermeable spherical particle. Int. J. Appl. Comput. Math. 5(3), 1–10 (2019)

    Article  MathSciNet  Google Scholar 

  33. Yadav, P.K.: Influence of magnetic field on the stokes flow through porous spheroid: hydrodynamic permeability of a membrane using cell model technique. Int. J. Fluid Mech. Res. 47(3), 273–290 (2020)

    Article  MathSciNet  Google Scholar 

  34. Madasu, K.P., Bucha, T.: Effect of magnetic field on the slow motion of a porous spheroid: Brinkman’s model. Arch. Appl. Mech. 91(4), 1739–1755 (2021)

    Article  Google Scholar 

  35. Namdeo, R.P., Gupta, B.R.: Creeping flow around a spherical particle covered by semipermeable shell in presence of magnetic field. IOP Conf. Ser. Mater. Sci. Eng. 1136, 012032 (2021)

    Article  Google Scholar 

  36. Saini, A.K., Chauhan, S.S., Tiwari, A.: Creeping flow of Jeffrey fluid through a swarm of porous cylindrical particles: Brinkman–Forchheimer model. Int. J. Multiph. Flow 145(1), 103803 (2021)

    Article  MathSciNet  Google Scholar 

  37. El-Sapa, S., Alsudais, N.S.: Effect of magnetic field on the motion of two rigid spheres embedded in porous media with slip surfaces. Eur. Phys. J. E 44(5), 1–11 (2021)

    Article  Google Scholar 

  38. Namdeo, R.P., Gupta, B.R.: Slip at the surface of slightly deformed sphere in MHD flow. Spec. Top. Rev. Porous Med. 13(1), 1–14 (2022)

    Article  Google Scholar 

  39. Namdeo, R.P., Gupta, B.R.: Magnetic effect on the creeping flow around a slightly deformed semipermeable sphere. Arch. Appl. Mech. 91(1), 241–254 (2022)

    Article  Google Scholar 

  40. Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics. Prentice-Hall, Englewood Cliffs (1965)

    MATH  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ravendra Prasad Namdeo or Bali Ram Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namdeo, R.P., Gupta, B.R. Impact of Magnetic Field on the Flow of a Conducting Fluid Past an Impervious Spheroid Embedded in Porous Medium. Int. J. Appl. Comput. Math 8, 131 (2022). https://doi.org/10.1007/s40819-022-01321-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-022-01321-5

Keywords

Navigation