Skip to main content
Log in

Differential effects of experimental ulcerative colitis on P2X7 receptor expression in enteric neurons

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The digestive tracts of ulcerative colitis and Crohn’s disease patients present with pathophysiological processes and intestinal necrosis. This study examined the P2X7 receptor and changes in the distal colon in enteric neurons of rats with experimental ulcerative colitis. The analysis was performed in the distal colons of rats with ulcerative colitis induced by the administration of 2,4,6-trinitrobenzene sulfonic acid (colitis group). The survival time after colitis induction was 24 h. The treated animals were compared to sham rats injected with phosphate-buffered saline and to animals with no intervention (control group). Tissues were prepared for immunohistochemical double-staining methods to examine P2X7 receptor, choline acetyltransferase (ChAT), calbindin, calretinin, anti-HuC/D (pan-neuronal) and S100β (pan-glial). The colocalization of the P2X7 receptor-immunoreactive (IR) cells was observed in the myenteric plexus with nitric oxide synthase (NOS)-, ChAT-,calbindin-, calretinin- and HuC/D-IR neurons and S100β-IR cells in the control, sham and colitis groups. The neuronal density (cell bodies/cm2) decreased in the myenteric plexus by 11, 18, 34, 22 and 60 % in the P2X7 receptor, NOS-, ChAT-, calbindin- and calretinin-IR neurons, respectively. In addition, the densities (cell bodies/cm2) of HuC/D-IR neurons and S100β-IR enteric glial cells decreased by 33 and 29 %, respectively. The profile areas were reduced by 6.8 and 21 % in NOS- and ChAT-IR neurons, respectively. There was also a 20 % increase of calbindin-IR neurons. Morphological changes were observed, such as increased neutrophils, disintegration of the intestinal epithelium and goblet cells and decreased collagen. This study demonstrated that colitis differentially affects P2X7 receptor-expressing enteric neurons based on their chemical codes and may cause changes in morphology and motility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signaling in the nervous system: an overview. Trends Neurosci 32:19–29. doi:10.1016/j.tins.2008.10.001

    Article  CAS  PubMed  Google Scholar 

  • Bian XC, Bertrand PP, Bornstein JC (2000) Descending inhibitory reflexes involve P2X receptor–mediated transmission from interneurons to motor neurons in guinea pig ileum. J Physiol 528:551–560. doi:10.1111/j.1469-7793.2000.00551.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bingöl-Koloğlu M, Senocak ME, Talim B, Kale G, Ocal T, Büyükpamukçu N (2000) A comparative histopathologic evaluation of the effects of three different solutions used for whole bowel irrigation: an experimental study. J Pediatr Surg 35(4):564–568. doi:10.1053/jpsu.2000.0350564

    Article  PubMed  Google Scholar 

  • Boyer L, Ghoreishi M, Templeman V, Vallance BA, Buchan AM, Jevon G, Jacobson K (2005) Myenteric plexus injury and apoptosis in experimental colitis. Auton Neurosci 117:41–53. doi:10.1016/j.autneu.2004.10.006

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (2013) Purinergic signaling in the gastrointestinal tract and related organs in health and disease. Purinergic Signal. doi:10.1007/s11302-013-9397-9

    Google Scholar 

  • Castelucci P, Robbins HL, Poole DP, Furness JB (2002a) The distribution of purine P2X2 receptors in the guinea pig enteric nervous system. Histochem Cell Biol 117:415–422. doi:10.1007/s00418-002-0404-4

    Article  CAS  PubMed  Google Scholar 

  • Castelucci P, De Souza RR, De Angelis RC, Furness JB, Liberti EA (2002b) Effects of pre- and postnatal protein deprivation and postnatal re-feeding on myenteric neurons of the rat large intestine: a quantitative morphological study. Cell Tissue Res 310:1–7. doi:10.1007/s00441-002-0615-y

    Article  CAS  PubMed  Google Scholar 

  • Chiocchetti R, Poole DP, Kimura H, Aimi Y, Robbins HL, Castelucci P, Furness JB (2003) Evidence that two forms of choline acetyltransferase are differentially expressed in subclasses of enteric neurons. Cell Tissue Res 311:11–22. doi:10.1007/s00441-002-0652-6

    Article  CAS  PubMed  Google Scholar 

  • Chlumská A, Benes Z, Mukensnabl P, Zámecník M (2010) Histologic findings after sodium phosphate bowel preparation for colonoscopy. Diagnostic pitfalls of colonoscopic biopsies. Cesk Patol 46(2):37–41

    PubMed  Google Scholar 

  • Elson CO, Beagley KW, Sharmanov AT, Fujihashi K, Kiyono H, Tennyson GS, Cong Y, Black CA, Ridwan BW, McGhee JR (1986) Hapten-induced model of murine inflammatory bowel disease: mucosa immune responses and protection by tolerance. J Immunol 157(5):2174–2185

    Google Scholar 

  • Erdogan B, Isiksoy S, Dundar E, Pasaoglu O, Bal C (2003) The effects of sodium phosphate and polyethylene glycol-electrolyte bowel preparation solutions on 2,4,6-trinitrobenzenesulfonic acid-induced colitis in the rat. Exp Toxicol Pathol 2–3:213–220. doi:10.1078/0940-2993-00318

    Article  Google Scholar 

  • Franke H, Illes P (2006) Involvemente of P2 receptors in the growth and survival of neurons in the CNS. Pharmacol Ther 109:297–324. doi:10.1016/j.pharmthera.2005.06.002

    Article  CAS  PubMed  Google Scholar 

  • Franke H, Krügel U, Illes P (2006) P2 receptors and neuronal injury. Pflugers Arch 452:622–644. doi:10.1007/s00424-006-0071-8

    Article  CAS  PubMed  Google Scholar 

  • Freytag C, Seeger J, Siegemund T, Grosche J, Grosche A, Freeman DE, Schusser GF, Härtig W (2008) Immunohistochemical characterization and quantitative analysis of neurons in the myenteric plexus of the equine intestine. Brain Res 1244:1253–1264. doi:10.1016/j.brainres.2008.09.070

    Article  Google Scholar 

  • Furness JB (2006) The enteric nervous system. Blackwell publishing, Victoria

    Google Scholar 

  • Galligan JJ (2002) Ligand-gated ion channels in the enteric nervous system. Neurogastroenterol Motil 14:611–623. doi:10.1046/j.1365-2982.2002.00363.x

    Article  CAS  PubMed  Google Scholar 

  • Galligan JJ, Lepard KJ, Schneider DA, Zhou X (2000) Multiple mechanisms of fast excitatory synaptic transmission in the enteric nervous system. J Auton Nerv Syst 81:97–103. doi:10.1016/S0165-1838(00)00130-2

    Article  CAS  PubMed  Google Scholar 

  • Geboes K, Collins SM (1998) Structural abnormalities of the nervous system in Crohn’s disease and ulcerative colitis. Neurogastroenterol Mol 10:189–202

    Article  CAS  Google Scholar 

  • Giaroni C, Knight GE, Ruan H-Z, Glass R, Bardini M, Lecchini S, Frigo G, Burnstock G (2002) P2 receptors in the murine gastrointestinal tract. Neuropharmacology 43:1313–1323. doi:10.1016/S0028-3908(02)00294-0

    Article  CAS  PubMed  Google Scholar 

  • Girotti PA, Misawa R, Palombit K, Mendes CE, Bittencourt JC, Castelucci P (2013) Differential effects of undernourishment on the differentiation and maturation of rat enteric neurons. Cell Tissue Res 353:367–380. doi:10.1007/s00441-013-1620-z

    Article  CAS  PubMed  Google Scholar 

  • Gomes OA, Castelucci P, Fontes RBV, Liberti EA (2006) Effects of pre- and postnatal protein and postnatal re-feeding on myenteric neurons of the rat small intestine: a quantitative morphological study. Auton Neurosci 126:277–284. doi:10.1016/j.autneu.2006.03.003

    Article  PubMed  Google Scholar 

  • Gulbransen BD, Sharkey KA (2012) Novel functional roles for enteric glia in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 9:625–632. doi:10.1038/nrgastro.2012.138

    Article  CAS  PubMed  Google Scholar 

  • Gulbransen BD, Bashashati M, Hirota SA, Gui X, Roberts JA, MacDonald JA, Muruve DA, McKay DM, Beck PL, Mawe GM, Thompson RJ, Sharkey KA (2012) Activation of neuronal P2X7 receptor-pannexin-1 mediates death of enteric neurons during colitis. Nat Med 18(4):600–604. doi:10.1038/nm.2679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu HZ, Gao N, Lin Z, Liu S, Ren J, Xia Y, Wood JD (2001) P2X7 receptors in the enteric nervous system of guinea-pig small intestine. J Comp Neurol 440:299–310. doi:10.1002/cne.1387

    Article  CAS  PubMed  Google Scholar 

  • Kawada M, Arihiro A, Mizoguchi E (2007) Insights from advances in research of chemically induced experimental models of human inflammatory bowel disease. World J Gastroenterol 13(42):5581–5593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kawamura M Jr, Ruskin DN, Masino SA (2010) Metabolic autocrine regulation of neurons involves cooperation among pannexin hemichannels, adenosine receptors, and KATP channels. J Neurosci. 17; 30(11):3886–3895 doi: 10.1523/JNEUROSCI.0055-10.2010

  • Linden DR (2012) Colitis is associated with a loss of intestinofugal neurons. Am J Physiol Gastrointest Liver Physiol 303(10):1096–1104. doi:10.1152/ajpgi.00176.2012

    Article  Google Scholar 

  • Linden DR, Couverttte JM, Ciolino A, Mcquoid C, Blaszyk H, Sharkey KA, Mawe GM (2005) Indiscriminate loss of myenteric neurons in the TNBS-inflamed guinea-pig distal colon. Neurogastroenterol Motil 17:751–760. doi:10.1111/j.1365-2982.2005.00703.x

    Article  CAS  PubMed  Google Scholar 

  • Locovei S, Scemes E, Qiu F, Spray DC, Dahl G (2007) Pannexin1 is part of the pore forming unit of the P2X(7) receptor death complex. FEBS Lett 581(3):483–488. doi:10.1016/j.febslet.2006.12.056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lomax AE, Fernandez E, Sharkey KA (2005) Plasticity of the enteric nervous system during intestinal inflammation. Neurogastroenterol Motil 17:4–15. doi:10.1111/j.1365-2982.2004.00607.x

    Article  CAS  PubMed  Google Scholar 

  • Mann PT, Furness JB, Southwell BR (1999) Choline acetyltransferase immunoreactivity of putative intrinsic primary afferent neurons in the rat ileum. Cell Tissue Res 297(2):241–248. doi:10.1007/s004410051352

    Article  CAS  PubMed  Google Scholar 

  • Misawa R, Girotti PA, Mizuno MS, Liberti EA, Furness JB, Castelucci P (2010) Effects of protein deprivation and re-feeding on P2X2 receptors in enteric neurons. World J Gastroenterol 16:3651–3663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mizuno MS, Crisma AR, Borelli P, Castelucci P (2012) Expression of the P2X2 receptor in different classes of ileum myenteric neurons in the female obese ob/ob mouse. World J Gastroenterol 18:4693–4703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL (1989) Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 96(3):795–803

    CAS  PubMed  Google Scholar 

  • Palombit K, Mendes CE, Tavares-de-Lima W, Silveira MP, Castelucci P (2013) Effects of ischemia and reperfusion on subpopulations of rat enteric neurons expressing the P2X7 receptor. Dig Dis Sci 58:3429–3439. doi:10.1007/s10620-013-2847-y

    Article  CAS  PubMed  Google Scholar 

  • Paulino AS, Palombit K, Cavriani G, Tavares-de-Lima W, Mizuno MS, Marosti AR, da Silva MV, Girotti PA, Liberti EA, Castelucci P (2011) Effects of ischemia and reperfusion on P2X2 receptor expressing neurons of the rat ileum enteric nervous system. Dig Dis Sci 56:2262–2277. doi:10.1007/s10620-011-1588-z

    Article  CAS  PubMed  Google Scholar 

  • Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25(21):5071–5082. doi:10.1038/sj.emboj.7601378

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poli E, Lazzaretti M, Grandi D, Pozzoli C, Coruzzi G (2001) Morphological and functional alterations of the myenteric plexus in rats with TNBS- Induced Colitis. Neurochemical Res 26:1085–1093. doi:10.1023/A:1012313424144

    Article  CAS  Google Scholar 

  • Pontell L, Castelucci P, Bagyánszki M, Jovic T, Thacker M, Nurgali K, Bron R, Furness JB (2009) Structural changes in the epithelium of the small intestine and immune cell infiltration of enteric ganglia following acute mucosal damage and local inflammation. Virchows Arch 455:55–65. doi:10.1007/s00428-009-0795-x

    Article  CAS  PubMed  Google Scholar 

  • Poole DP, Castelucci P, Robbins HL, Chiocchetti R, Furness JB (2002) The distribution of P2X3 purine receptor subunits in the guinea-pig enteric nervous system. Auton Neurosci 101:39–47

    Article  CAS  PubMed  Google Scholar 

  • Poornima V, Madhupriya M, Kootar S, Sujatha G, Kumar A, Bera AK (2012) P2X7 receptor-pannexin 1 hemichannel association: effect of extracellular calcium on membrane permeabilization. J Mol Neurosci 46(3):585–594. doi:10.1007/s12031-011-9646-8

    Article  CAS  PubMed  Google Scholar 

  • Porter AJ, Wattchow DA, Brookes SJ, Schemann M, Costa M (1996) Choline acetyltransferase immunoreactivity in the human small and large intestine. Gastroenterology 111:401–408

    Article  CAS  PubMed  Google Scholar 

  • Rivera LR, Thacker M, Castelucci P, Bron R, Furness JB (2009) The reactions of specific neuron types to intestinal ischemia in the guinea pig enteric nervous system. Acta Neuropathol 118:261–270. doi:10.1007/s00401-009-0549-5

    Article  PubMed  Google Scholar 

  • Rivera LR, Pontell L, Cho HJ, Castelucci P, Thacker M, Poole DP, Frugier T, Furness JB (2012) Knock out of neuronal nitric oxide synthase exacerbates intestinal ischemia/reperfusion injury in mice. Cell Tissue Res 349:565–576. doi:10.1007/s00441-012-1451-3

    Article  CAS  PubMed  Google Scholar 

  • Ruan HZ, Burnstock G (2005) The distribution of P2X5 purinergic receptors in the enteric nervous system of mouse. Cell Tissue Res 319:191–200. doi:10.1007/s00441-004-1002-7

    Article  CAS  PubMed  Google Scholar 

  • Sharkey KA, Kroese ABA (2001) Consequences of intestinal inflammation on the enteric nervous system: neuronal activation induced by inflammatory mediators. Anat Rec 262:79–90

    Article  CAS  PubMed  Google Scholar 

  • Silverman WR, de Rivero Vaccari JP, Locovei S, Qiu F, Carlsson SK, Scemes E, Keane RW, Dahl G (2009) The pannexin 1 channel activates the inflammasome in neurons and astrocytes. J Biol Chem 284(27):18143–18151. doi:10.1074/jbc.M109.004804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soyer T, Aydos TR, Hançerlioğullari O, Korkut O, Aktuna Z, Cakmak M (2009) Effect of whole gut irrigation solutions on gastrointestinal smooth muscle activity. J Pediatr Surg 44(9):1719–1724. doi:10.1016/j.jpedsurg.2009.02.007

    Article  PubMed  Google Scholar 

  • Sperlágh B, Vizi ES, Wirkner K, Illes P (2006) P2X7 receptors in the nervous system. Prog Neurobiol 78:327–346. doi:10.1016/j.pneurobio.2006.03.007

    Article  PubMed  Google Scholar 

  • Van Nassauw L, Brouns I, Adraensen D, Burnstock G, Timmermans JP (2002) Neurochemical identification of enteric neurons expressing P2X(3) receptors in the guinea-pig ileum. Histochem Cell Biol 118(3):193–203. doi:10.1007/s00418-002-0447-6

    PubMed  Google Scholar 

  • Vanderwinden JM, Timmermans JP, Schiffmann SN (2003) Glial cells, but not interstitial cells, express P2X7, an ionotropic purinergic receptor, in rat gastrointestinal musculature. Cell Tissue Res 312:149–154. doi:10.1007/s00441-003-0716-2

    PubMed  Google Scholar 

  • Volonté C, Apolloni S, Skaper SD, Burnstock G (2012) P2X7 receptors: channels, pores and more. CNS Neurol Disord: Drug Targets 11(6):705–721

    Article  Google Scholar 

  • Von Boyen G, Steinkamp M (2011) The role of enteric glia in gut inflammation. Neuron Glia Biol 21:1–6. doi:10.1017/S1740925X11000068

    Google Scholar 

  • Vulchanova L, Arvidsson U, Riedl M, Wang J, Buell G, Suprenant A, Nort RA (1996) Differential distribution of two ATP-gated ion channels (P2x receptors) determined by immunohistochemistry. Proc Natl Acad Sci 93:8063–8067

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Winston JH, Li Q, Sarna SK (2013) Paradoxical regulation of ChAT and nNOS expression in animal models of Crohn’s colitis and ulcerative colitis. Am J Physiol Gastrointest Liver Physiol 305(4):295–302. doi:10.1152/ajpgi.00052.2013

    Article  Google Scholar 

  • Xiang Z, Burnstock G (2004a) Development of nerves expressing P2X3 receptors in the myenteric plexus of rat stomach. Histochem Cell Biol 122:111–119. doi:10.1007/s00418-004-0680-2

    CAS  PubMed  Google Scholar 

  • Xiang Z, Burnstock G (2004b) P2X2 and P2X3 purinoceptors in the rat enteric nervous system. Histochem Cell Biol 121:169–179. doi:10.1007/s00418-004-0620-1

    Article  CAS  PubMed  Google Scholar 

  • Xiang Z, Burnstock G (2005) Distribution of P2Y2 receptors in the guinea pig enteric nervous system and its coexistence with P2X2 and P2X3 receptors, neuropeptide Y, nitric oxide synthase and calretinin. Histochem Cell Biol 124:379–390. doi:10.1007/s00418-005-0043-7

    Article  CAS  PubMed  Google Scholar 

  • Yiangou Y, Facer P, Baecker PA, Ford AP, Knowles CH, Chan CL, Williams NS, Anand P (2001) ATP-gated ion channel P2X(3) is increased in human inflammatory bowel disease. Neurogastroenterol Motil 13:365–369. doi:10.1046/j.1365-2982.2001.00276.x

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Zhao Z, Sun J, Guo W, Fu J, Burnstock G, He C, Xiang Z (2010) Expression of P2X6 receptors in the enteric nervous system of the rat gastrointestinal tract. Histochem Cell Biol 133:177–188. doi:10.1007/s00418-009-0659-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Rosana Prisco for performing the statistical analysis. These studies were supported by the São Paulo Research Foundation (FAPESP/Fundação de Amparo à Pesquisa do Estado de São Paulo) and the CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico).

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Castelucci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, M.V., Marosti, A.R., Mendes, C.E. et al. Differential effects of experimental ulcerative colitis on P2X7 receptor expression in enteric neurons. Histochem Cell Biol 143, 171–184 (2015). https://doi.org/10.1007/s00418-014-1270-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-014-1270-6

Keywords

Navigation