Skip to main content
Log in

Differential effects of undernourishment on the differentiation and maturation of rat enteric neurons

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The colocalization, number, and size of various classes of enteric neurons immunoreactive (IR) for the purinergic P2X2 and P2X7 receptors (P2X2R, P2X7R) were analyzed in the myenteric and submucosal plexuses of control, undernourished, and re-fed rats. Pregnant rats were exposed to undernourishment (protein-deprivation) or fed a control diet, and their offspring comprised the following experimental groups: rats exposed to a normal diet throughout gestation until postnatal day (P)42, rats protein-deprived throughout gestation and until P42, and rats protein-deprived throughout gestation until P21 and then given a normal diet until P42. Immunohistochemistry was performed on the myenteric and submucosal plexuses to evaluate immunoreactivity for P2X2R, P2X7R, nitric oxide synthase (NOS), choline acetyltransferase (ChAT), calbindin, and calretinin. Double-immunohistochemistry of the myenteric and submucosal plexuses demonstrated that 100% of NOS-IR, calbindin-IR, calretinin-IR, and ChAT-IR neurons in all groups also expressed P2X2R and P2X7R. Neuronal density increased in the myenteric and submucosal plexuses of undernourished rats compared with controls. The average size (profile area) of some types of neurons in the myenteric and submucosal plexuses was smaller in the undernourished than in the control animals. These changes appeared to be reversible, as animals initially undernourished but then fed a normal diet at P21 (re-feeding) were similar to controls. Thus, P2X2R and P2X7R are present in NOS-positive inhibitory neurons, calbindin- and calretinin-positive intrinsic primary afferent neurons, cholinergic secretomotor neurons, and vasomotor neurons in rats. Alterations in these neurons during undernourishment are reversible following re-feeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29

    Article  PubMed  CAS  Google Scholar 

  • Bian XC, Bertrand PP, Bornstein JC (2000) Descending inhibitory reflexes involve P2X receptor-mediated transmission from interneurons to motor neurons in guinea-pig ileum. J Physiol (Lond) 528:551–560

    Article  CAS  Google Scholar 

  • Bornstein JC (2008) Purinergic mechanism in the control of gastrointestinal motility. Purinergic Signal 4:197–212

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (2007) Physiology and pathophysyiology of purinergic neurotransmission. Physiol Rev 87:659–797

    Article  PubMed  CAS  Google Scholar 

  • Castelucci P, De Souza RR, De Angelis RC, Furness JB, Liberti EA (2002a) Effects of pre- and postnatal protein deprivation and postnatal re-feeding on myenteric neurons of the rat large intestine: a quantitative morphological study. Cell Tissue Res 310:1–7

    Article  PubMed  CAS  Google Scholar 

  • Castelucci P, Robbins HL, Poole DP, Furness JB (2002b) The distribution of purine P2X2 receptors in the guinea pig enteric nervous system. Histochem Cell Biol 117:415–422

    Article  PubMed  CAS  Google Scholar 

  • Castelucci P, Robbins HL, Furness JB (2003) P2X(2) purine receptor immunoreactivity of intraganglionic laminar endings in the mouse gastrointestinal tract. Cell Tissue Res 312:167–174

    PubMed  CAS  Google Scholar 

  • Cha CJM, Gelardi NL, Oh W (1987) Growth and cellular composition in rats with intrauterine growth retardation: effects of posnatal nutrition. J Nutr 154:1463–1468

    Google Scholar 

  • Chu Y, Mouat MF, Stabille SR, Coffield JA, Orlando R, Grider A (2003) Expression of P2X6, a purinergic receptor subunit, is affected by dietary zinc deficiency in rat hippocampus. Biol Trace Elem Res 91:77–87

    Article  PubMed  CAS  Google Scholar 

  • Conboy VB, Santer RM, Swift GL (1987) Effects of prenatal undernutrition on prevertebral sympathetic neurons in the rat: a morphological and fluorescence histochemical study. J Anat 154:47–53

    PubMed  CAS  Google Scholar 

  • Cordero ME, Valenzuela CY, Rodriguez A, Aboitiz F (2003) Dendritic morphology and orientation of pyramidal cells of the neocortex in two groups of early postnatal undernourished-rehabilitated rats. Brain Res Dev Brain Res 142:37–45

    Article  PubMed  CAS  Google Scholar 

  • Cowen T, Johnson RJR, Soubeyre V, Santer RM (2000) Restricted diet rescues rat enteric motor neurons from age related cell death. Gut 47:553–660

    Article  Google Scholar 

  • D’Orlando C, Fellay B, Schwaller B, Salicio V, Bloc A, Gotzos V, Celio MR (2001) Calretinin and calbindin D-28k delay the onset of cell death after excitotoxic stimulation in transfected P19 cells. Brain Res 909:145–158

    Article  PubMed  Google Scholar 

  • Franke H, Krüel U, Illes P (2006) P2 receptors and neuronal injury. Eur J Physiol 452:622–644

    Article  CAS  Google Scholar 

  • Furness JB (2006) The enteric nervous system. Wiley-Blackwell, New York

    Google Scholar 

  • Giaroni C, Knight GE, Ruan H-Z, Glass R, Bardini M, Lecchini S, Frigo G, Burnstock G (2002) P2 receptors in the murine gastrointestinal tract. Neuropharmacology 43:1313–1323

    Article  PubMed  CAS  Google Scholar 

  • Gomes OA, Castelucci P, Fontes RBV, Liberti EA (2006) Effects of pre- and postnatal protein and postnatal re-feeding on myenteric neurons of the rat small intestine: a quantitative morphological study. Auton Neurosci 126:277–284

    Article  PubMed  Google Scholar 

  • Gomes SP, Nyengaard JR, Misawa R, Girotti PA, Castelucci P, Blazquez FH, de Melo MP, Ribeiro AA (2009) Atrophy and neuron loss: effects of a protein-deficient diet on sympathetic neurons. J Neurosci Res 87:3568–3575

    Article  PubMed  CAS  Google Scholar 

  • Greggio FM, Fontes RBV, Maifrino LBM, Castelucci P, Souza RR, Liberti EA (2010) Effects of perinatal protein deprivation and recovery on esophageal myenteric plexus. World J Gastroenterol 16:563–570

    Article  PubMed  CAS  Google Scholar 

  • Hu HZ, Gao N, Lin Z, Liu S, Ren J, Xia Y, Wood JD (2001) P2X7 receptors in the enteric nervous system of guinea-pig small intestine. J Comp Neurol 440:299–310

    Article  PubMed  CAS  Google Scholar 

  • Hwang IK, Kang TC, Lee JC (2003) Chronological alterations of calbindin D-28k immunoreactivity in the gerbil main olfactory bulb after ischemic insult. Brain Res 971:250–254

    Article  PubMed  CAS  Google Scholar 

  • King RS, Kemper TL, Debassio WA, Ramzan M, Blatt GJ, Rosene DL, Galler JR (2002) Birthdates and number of neurons in the serotonergic raphe nuclei in the rat with prenatal protein malnutrition. Nutr Neurosci 5:391–397

    Article  PubMed  CAS  Google Scholar 

  • Kwon OJ, Kim JY, Kim SY, Jeon CJ (2005) Alterations in the localization of calbindin D28K-, calretinin-, and parvalbumin-immunoreactive neurons of rabbit retinal ganglion cell layer from ischemia and reperfusion. Mol Cells 19:382–390

    PubMed  CAS  Google Scholar 

  • Lister JP, Blatt GJ, Kemper TL, Tonkiss J, DeBassio WA, Galler JR, Rosene DL (2011) Prenatal protein malnutrition alters the proportion but not numbers of parvalbumin-immunoreactive interneurons in the hippocampus of the adult Sprague–Dawley rat. Nutr Neurosci 14:165–178

    Article  PubMed  CAS  Google Scholar 

  • Lukas W, Jones KA (1994) Cortical neurons containing calretinin are selectively resistant to calcium overload and excitotoxicity in vitro. Neuroscience 61:307–316

    Article  PubMed  CAS  Google Scholar 

  • Misawa R, Girotti PA, Mizuno MS, Liberti EA, Furness JB, Castelucci P (2010) Effects of protein deprivation and re-feeding on P2X2 receptors in enteric neurons. World J Gastroenterol 16:3651–3663

    Article  PubMed  CAS  Google Scholar 

  • Mizuno MS, Crisma AR, Borelli P, Castelucci P (2012) Expression of the P2X2 receptor in different classes of ileum myenteric neurons in the female obese ob/ob mouse. World J Gastroenterol 18:4693–4703

    Article  PubMed  CAS  Google Scholar 

  • Monro RL, Bornstein JC, Bertrand PP (2008) Synaptic transmission from the submucosal plexus to the myenteric plexus in guinea-pig ileum. Neurogastroenterol Motil 20:1165–1173

    Article  PubMed  CAS  Google Scholar 

  • Orrenius S, Nicotera P (1994) The calcium ion and cell death. J Neural Transm Suppl 43:1–11

    PubMed  CAS  Google Scholar 

  • Paulino AS, Palombit K, Cavriani G, Tavares-de-Lima W, Mizuno MS, Marosti AR, da Silva MV, Girotti PA, Liberti EA, Castelucci P (2011) Effects of ischemia and reperfusion on P2X2 receptor expressing neurons of the rat ileum enteric nervous system. Dig Dis Sci 56:2262–2277

    Article  PubMed  CAS  Google Scholar 

  • Poole DP, Castelucci P, Robbins HL, Chiocchetti R, Furness JB (2002) The distribution of P2X3 purine receptor subunits in the guinea-pig enteric nervous system. Auton Neurosci 101:39–47

    Article  PubMed  CAS  Google Scholar 

  • Potier B, Krzywkowski P, Lamour Y, Dutar P (1994) Loss of calbindin-immunoreactivity in CA1 hippocampal stratum radiatum and stratum lacunosum-moleculare interneurons in the aged rat. Brain Res 661:181–188

    Article  PubMed  CAS  Google Scholar 

  • Qu ZD, Thacker M, Castelucci P, Bagyánszki M, Epstein ML, Furness JB (2008) Immunohistochemical analysis of neuron types in the mouse small intestine. Cell Tissue Res 334:147–161

    Article  PubMed  CAS  Google Scholar 

  • Ren J, Bian X, DeVries M, Schnegelsberg B, Cockayne DA, Ford AP, Galligan JJ (2003) P2X2 subunits contribute to fast synaptic excitation in myenteric neurons of the mouse small intestine. J Physiol (Lond) 552:809–821

    Article  CAS  Google Scholar 

  • Rivera LR, Thacker M, Castelucci P, Bron R, Furness JB (2009) The reactions of specific neuron types to intestinal ischemia in the guinea-pig enteric nervous system. Acta Neuropathol 24:1–10

    Google Scholar 

  • Ruan HZ, Burnstock G (2005) The distribution of P2X5 purinergic receptors in the enteric nervous system of mouse. Cell Tissue Res 319:191–200

    Article  PubMed  CAS  Google Scholar 

  • Santer RM, Conboy VB (1990) Prenatal undernutrition permanently decreases enteric neuron number and sympathetic innervation of Auerbach’s plexus in the rat. J Anat 168:57–62

    PubMed  CAS  Google Scholar 

  • Sperlágh B, Vizi ES, Wirkner K, Illes P (2006) P2X7 receptors in the nervous system. Prog Neurobiol 78:327–346

    Article  PubMed  Google Scholar 

  • Van Nassauw L, Brouns I, Adraensen D, Burnstock G, Timmermans JP (2002) Neurochemical identification of enteric neurons expressing P2X(3) receptors in the guinea-pig ileum. Histochem Cell Biol 118:193–203

    PubMed  Google Scholar 

  • Vanderwinden JM, Timmermans JP, Schiffmann SN (2003) Glial cells, but not interstitial cells, express P2X7, an ionotropic purinergic receptor, in rat gastrointestinal musculature. Cell Tissue Res 312:149–154

    PubMed  Google Scholar 

  • Vulchanova L, Arvidsson U, Riedl M, Wang J, Buell G, Suprenant A, Nort RA (1996) Differential distribution of two ATP-gated ion channels (P2X receptors) determined by immunohistochemistry. Proc Natl Acad Sci USA 93:8063–8067

    Article  PubMed  CAS  Google Scholar 

  • Xiang Z, Burnstock (2004) P2X2 and P2X3 purinoceptors in the rat enteric nervous system. Histochem Cell Biol 12:169–179

    Article  Google Scholar 

  • Xiang Z, Burnstock G (2005) Distribution of P2Y2 receptors in the guinea pig enteric nervous system and its coexistence with P2X2 and P2X3 receptors, neuropeptide Y, nitric oxide synthase and calretinin. Histochem Cell Biol 124:379–390

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, Zhao Z, Sun J, Guo W, Fu J, Burnstock G, He C, Xiang Z (2010) Expression of P2X6 receptors in the enteric nervous system of the rat gastrointestinal tract. Histochem Cell Biol 133:177–188

    Article  PubMed  CAS  Google Scholar 

  • Zhang JH, Morita Y, Hironaka T, Emson PC, Tohyama M (1990) Ontological study of calbindin-D28k-like and parvalbumin-like immunoreactivities in rat spinal cord and dorsal root ganglia. J Comp Neurol 302:715–728

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Edson Aparecido Liberti for comments, Associate Professor Carol Fuzeti Elias for providing the Leica microscope for these analyses, and Rosana Prisco for statistical analyses.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Castelucci.

Additional information

These studies were supported by FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo/Proc 04/00746-3) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Girotti, P.A., Misawa, R., Palombit, K. et al. Differential effects of undernourishment on the differentiation and maturation of rat enteric neurons. Cell Tissue Res 353, 367–380 (2013). https://doi.org/10.1007/s00441-013-1620-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1620-z

Keywords

Navigation