Skip to main content
Log in

A cell culture model for investigation of Hirano bodies

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Hirano bodies are paracrystalline F-actin-rich aggregations associated with a variety of conditions including aging, and neurodegenerative diseases. The composition and structure of these inclusions have been described by immunohistochemistry and ultrastructure, respectively. However, studies of the physiological function and dynamics of Hirano bodies have been hindered due to lack of a facile in vitro experimental system. We have developed a model for formation of Hirano bodies in mammalian cell cultures by expression of the carboxy-terminal fragment (CT) of a 34-kDa actin-bundling protein. Expression of the CT protein induces F-actin rearrangement in HEK 293, HeLa, Cos7 cells, neuroblastoma and astrocytic cells, and in primary neurons. We have termed these structures model Hirano bodies, since their composition and ultrastructure is quite similar to that reported in vivo. Model Hirano bodies in cell cultures sometimes appeared to be formed of a number of smaller domains, suggesting that small aggregates are intermediates in the formation of Hirano bodies. Stable lines expressing CT and bearing model Hirano bodies exhibit normal growth, morphology, and motility. This model provides a valuable system for the study of the dynamics of Hirano bodies, and their role in disease processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Adamec E, Yang F, Cole GM, Nixon RA (2001) Multiple-label immunocytochemistry for the evaluation of nature of cell death in experimental models of neurodegeneration. Brain Res Brain Res Protoc 7:193–202

    Article  PubMed  CAS  Google Scholar 

  2. Asai DJ, Thompson WC, Wilson L, Dresden CF, Schulman H, Purich DL (1985) Microtubule-associated proteins (MAPs): a monoclonal antibody to MAP 1 decorates microtubules in vitro but stains stress fibers and not microtubules in vivo. Proc Natl Acad Sci USA 82:1434–1438

    Article  PubMed  CAS  Google Scholar 

  3. Atsumi T, Yamamura Y, Sato T,Ikuta F (1980) Hirano bodies in the axon of peripheral nerves in a case with progressive external ophthalmoplegia with multisystemic involvements. Acta Neuropathol (Berl) 49:95–100

    Article  CAS  Google Scholar 

  4. Cartier L, Galvez S, Gajdusek DC (1985) Familial clustering of the ataxic form of Creutzfeldt-Jakob disease with Hirano bodies. J Neurol Neurosurg Psychiatry 48:234–238

    Article  PubMed  CAS  Google Scholar 

  5. David-Ferreira JF, David-Ferreira KL, Gibbs CJJ, Morris JA (1968) Scrapie in mice. Ultrastructural observations in the cerebral cortex. Proc Soc Exp Biol Med 127:313–320

    PubMed  CAS  Google Scholar 

  6. Dhingra V, Li Q, Allison AB, Stallknecht DE, Fu ZF (2005) Proteomic profiling and neurodegeneration in West-Nile-Virus-Infected neurons. J Biomed Biotechnol 2005(3):271–279

    Article  PubMed  CAS  Google Scholar 

  7. Dravid SM, Murray TF (2004) Spontaneous synchronized calcium oscillations in neocortical neurons in the presence of physiological [Mg(2+)]: involvement of AMPA/kainite and metabotropic glutamate receptors. Brain Res 1006:8–17

    Article  PubMed  CAS  Google Scholar 

  8. Fernandez R, Fernandez JM, Cervera C, Teijeira S, Teijeiro A, Dominguez C, Navarro C (1999) Adult glycogenosis II with paracrystalline mitochondrial inclusions and Hirano bodies in skeletal muscle. Neuromuscul Disord 9:136–143

    Article  PubMed  CAS  Google Scholar 

  9. Field EJ, Mathews JD, Raine CS (1969) Electron microscopic observations on the cerebellar cortex in kuru. J Neurol Sci 8:209–224

    Article  PubMed  CAS  Google Scholar 

  10. Field EJ, Narang HK (1972) An electron-microscopic study of scrapie in the rat: further observations on “inclusion bodies” and virus-like particles. J Neurol Sci 17:347–364

    Article  PubMed  CAS  Google Scholar 

  11. Fulga TA, Elson-Schwab I, Khurana V, Steinhilb ML, Spires TL, Hyman BT, Feany MB (2007) Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol 9:139–148

    Article  PubMed  CAS  Google Scholar 

  12. Furukawa R, Butz S, Fleischmann E, Fechheimer M (1992) The Dictyostelium discoideum 30,000 dalton protein contributes to phagocytosis. Protoplasma 169:18–27

    Article  Google Scholar 

  13. Furukawa R, Fechheimer M (1997) The structure, function, and assembly of actin filament bundles. Int Rev Cytol 175:29–90

    PubMed  CAS  Google Scholar 

  14. Galloway PG, Perry G, Gambetti P (1987) Hirano body filaments contain actin and actin-associated proteins. J Neuropathol Exp Neurol 46:185–199

    PubMed  CAS  Google Scholar 

  15. Galloway PG, Perry G, Kosik KS, Gambetti P (1987) Hirano bodies contain tau protein. Brain Res 403:337–340

    Article  PubMed  CAS  Google Scholar 

  16. Galvan V, Gorostiza OF, Banwait S, Ataie M, Logvinova AV, Sitaraman S, Carlson E, Sagi SA, Chevallier N, Jin K, Greenberg DA, Bredesen DE (2006) Reversal of Alzheimer’s-like pathology and behavior in human APP transgenic mice by mutation of asp 664. Proc Natl Acad Sci USA 103:7130–7135

    Article  PubMed  CAS  Google Scholar 

  17. Galvin JE, Lee VM, Schmidt ML, Tu PH, Iwatsubo T, Trojanowski JQ (1999) Pathobiology of the Lewy body. Adv Neurol 80:313–324

    PubMed  CAS  Google Scholar 

  18. Gambetti P, Schecket G, Ghetti B, Hirano A, Dahl D (1983) Neurofibrillary changes in human brain: an immunocytochemical study with a neurofilament antiserum. J Neuropathol Exp Neurol 42:69–79

    PubMed  CAS  Google Scholar 

  19. Gessaga EC,Anzil AP (1975) Rod-shaped filamentous inclusions and other ultrastructural features in a cerebellar astrocytoma. Acta Neuropathol (Berl) 33:119–127

    Article  CAS  Google Scholar 

  20. Gibson PH, Tomlinson BE (1977) Numbers of Hirano bodies in the hippocampus of normal and demented people with Alzheimer’s disease. J Neurol Sci 33:199–206

    Article  PubMed  CAS  Google Scholar 

  21. Goedert M (1999) Filamentous nerve cell inclusions in neurodegenerative diseases: tauopathies and alpha-synucleinopathies. Philos Trans R Soc Lond B Biol Sci 354:1101–1118

    Article  PubMed  CAS  Google Scholar 

  22. Goldman JE (1983) The association of actin with Hirano bodies. J Neuropathol Exp Neurol 42:146–152

    PubMed  CAS  Google Scholar 

  23. Hirano A, Dembitzer HM, Kurland LT, Zimmerman HM (1968) The fine structure of some intraganlionic alterations. J Neuropathol Exp Neurol 27:167–182

    PubMed  CAS  Google Scholar 

  24. Hirano A, Demblitzer HM (1976) Eosinophilic rod-like structure in myelinated fibres of hamster spinal roots. Neuropathol Appl Neurobiol 2:225–232

    Google Scholar 

  25. Hirano A (1994) Hirano bodies and related neuronal inclusions. Neuropathol Appl Neurobiol 20:3–11

    PubMed  CAS  Google Scholar 

  26. Hirano A (2005) The role of electron microscopy in neuropathology: a personal historical note. Acta Neuropathol (Berl) 109:115–123

    Article  Google Scholar 

  27. Izumiyama N, Ohtsubo K, Tachikawa T, Nakamura H (1991) Elucidation of three-dimensional ultrastructure of Hirano bodies by the quick-freeze, deep-etch and replica method. Acta Neuropathol (Berl) 81:248–254

    Article  CAS  Google Scholar 

  28. Johns JA, Brock AM, Pardee JD (1988) Colocalization of F-actin and 34-kilodalton actin bundling protein in Dictyostelium and cultured fibroblasts. Cell Motil Cytoskeleton 9:205–218

    Article  PubMed  CAS  Google Scholar 

  29. Johnston JA, Ward CL, Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143:1883–1898

    Article  PubMed  CAS  Google Scholar 

  30. Jordan-Sciutto K, Dragich J, Walcott D, Bowser R (1998) The presence of FAC1 protein in Hirano bodies. Neuropathol Appl Neurobiol 24:359–366

    Article  PubMed  CAS  Google Scholar 

  31. Kopito RR (2000) Aggresomes, inclusion bodies, and protein aggregation. Trends Cell Biol 10:524–530

    Article  PubMed  CAS  Google Scholar 

  32. Laas R, Hagel C (1994) Hirano bodies and chronic alcoholism. Neuropathol Appl Neurobiol 20:12–21

    PubMed  CAS  Google Scholar 

  33. Lee H-g, Ueda M, Miyamoto Y, Yoneda Y, Perry G, Smith MA, Zhu X (2006) Aberrant localization of importin a1 in hippocampal neurons in Alzheimer disease. Brain Res 1124:1–4

    Article  PubMed  CAS  Google Scholar 

  34. Lee SC, Zhao ML, Hirano A, Dickson DW (1999) Inducible nitric oxide synthase immunoreactivity in the Alzheimer disease hippocampus: association with Hirano bodies, neurofibrillary tangles, and senile plaques. J Neuropathol Exp Neurol 58:1163–1169

    PubMed  CAS  Google Scholar 

  35. Lim RWL, Furukawa R, Eagle S, Cartwright RC, Fechheimer M (1999) Three distinct F-actin binding sites in the Dictyostelium discoideum 34,000 dalton actin bundling protein. Biochemistry 38:800–812

    Article  PubMed  CAS  Google Scholar 

  36. Lim RWL, Furukawa R, Fechheimer M (1999) Evidence of intramolecular regulation of the Dictyostelium discoideum 34,000 dalton F-actin Bundling Protein. Biochemistry 38:16323–16332

    Article  PubMed  CAS  Google Scholar 

  37. Maciver SK, Harrington CR (1995) Two actin binding proteins, actin depolymerizing factor and cofilin, are associated with Hirano bodies. Neuroreport 6:1985–1988

    Article  PubMed  CAS  Google Scholar 

  38. Maselli AG, Davis R, Furukawa R, Fechheimer M (2002) Formation of Hirano bodies in Dictyostelium and mammalian cells induced by expression of a modified form of an actin cross-linking protein. J Cell Sci 115:1939–1952

    PubMed  CAS  Google Scholar 

  39. Maselli AG, Furukawa R, Thomson SAM, Davis RC, Fechheimer M (2003) Formation of Hirano bodies induced by expression of an actin cross-linking protein with a gain of function mutation. Eukaryot Cell 2:778–787

    Article  PubMed  CAS  Google Scholar 

  40. Mitake S, Ojika K, Katada E, Otsuka Y, Matsukawa N, Fujimori O (1995) Accumulation of hippocampal cholinergic neurostimulating peptide (HCNP)- related components in Hirano bodies. Neuropathol Appl Neurobiol 21:35–40

    PubMed  CAS  Google Scholar 

  41. Mitake S, Katada E, Otsuka Y, Matsukawa N, Iwase T, Tsugu T, Fujimori O, Ojika K (1996) Possible implication of hippocampal cholinergic neurostimulating peptide (HCNP)-related components in Hirano body formation. Neuropathol Appl Neurobiol 22:440–445

    PubMed  CAS  Google Scholar 

  42. Mitake S, Ojika K, Hirano A (1997) Hirano bodies and Alzheimer’s disease. Kaohsiung J Med Sci 13:10–18

    PubMed  CAS  Google Scholar 

  43. Munoz DG, Wang D, Greenberg BD (1993) Hirano bodies accumulate C-terminal sequences of beta-amyloid precursor protein (beta-APP) epitopes. J Neuropathol Exp Neurol 52:14–21

    PubMed  CAS  Google Scholar 

  44. Nagara H, Yajima K, Suzuki K (1980) An ultrastructural study on the cerebellum of the brindled mouse. Acta Neuropathol (Berl) 52:41–50

    Article  CAS  Google Scholar 

  45. Novak KD, Peterson MD, Reedy MC, Titus MA (1995) Dictyostelium myosin I double mutants exhibit conditional defects in pinocytosis. J Cell Biol 131:1205–1221

    Article  PubMed  CAS  Google Scholar 

  46. Ogata J, Budzilovich GN, Cravioto H (1972) A study of rod-like structures (Hirano bodies) in 240 normal and pathological brains. Acta Neuropathol (Berl) 21:61–67

    Article  CAS  Google Scholar 

  47. Okamoto K, Hirai S, Hirano A (1982) Hirano bodies in myelinated fibers of hepatic encephalopathy. Acta Neuropathol (Berl) 58:307–310

    Article  CAS  Google Scholar 

  48. Orr HT (2001) Beyond the Q’s in the polyglutamine diseases. Genes Dev 15:925–932

    Article  PubMed  CAS  Google Scholar 

  49. Peress NS, Perillo E (1995) Differential expression of TFG Beta 1, 2, and 3 isotypes in Alzheimer’s disease: a comparative immunohistochemical study with cerebral infarction, aged human and mouse control brains. J Neuropathol Exp Neurol 54:802–811

    PubMed  CAS  Google Scholar 

  50. Peterson C, Kress Y, Vallee R, Goldman JE (1988) High molecular weight microtubule-associated proteins bind to actin lattices (Hirano bodies). Acta Neuropathol (Berl) 77:168–174

    CAS  Google Scholar 

  51. Previll LA, Crosby ME, Castellani RJ, Bowser R, Perry G, Smith MA, Zhu X (2007) Increased Expression of p130 in Alzheimer Disease. Neurochem Res 32:639–644

    Article  PubMed  CAS  Google Scholar 

  52. Renkawek K, Bosman GJ, de Jong WW (1994) Expression of small heat shock protein hsp 27 in reactive gliosis in Alzheimer disease and other types of dementia. Acta Neuropathol (Berl) 87:511–519

    Article  CAS  Google Scholar 

  53. Rodriguez LG, Wu X, Guan JL (2005) Wound-healing assay. Methods Mol Biol 294:23–29

    PubMed  Google Scholar 

  54. Rossiter JP, Anderson LL, Yang F, Cole GM (2000) Caspase-cleaved actin (fractin) immunolabelling of Hirano bodies. Neuropathol Appl Neurobiol 26:342–346

    Article  PubMed  CAS  Google Scholar 

  55. Saganich MJ, Schroeder BE, Galvan V, Bredesen DE, Koo EH, Heinemann SF (2006) Deficits in synaptic transmission and learning in amyloid precursor protein (APP) transgenic mice require c-terminal cleavage of APP. J Neurosci 26:13428–13436

    Article  PubMed  CAS  Google Scholar 

  56. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  57. Schmidt ML, Lee VM, Trojanowski JQ (1989) Analysis of epitopes shared by Hirano bodies and neurofilament proteins in normal and Alzheimer’s disease hippocampus. Lab Invest 60:513–522

    PubMed  CAS  Google Scholar 

  58. Schochet SS Jr, Lampert PW, Lindenberg R (1968) Fine structure of the Pick and Hirano bodies in a case of Pick’s disease. Acta Neuropathol (Berl) 11:330–337

    Article  Google Scholar 

  59. Schochet SS Jr, McCormick WF (1972) Ultrastructure of Hirano bodies. Acta Neuropathol (Berl) 21:50–60

    Article  Google Scholar 

  60. Selkoe DJ (1998) The cell biology of b-amyloid precursor protein and presenilin in Alzheimer’s disease. Trends Cell Biol 8:447–453

    Article  PubMed  CAS  Google Scholar 

  61. Setoguti T, Esumi H, Shimizu T (1974) Specific organization of intracytoplasmic filaments in the dog testicular interstitial cell. Cell Tissue Res 148:493–497

    Article  PubMed  CAS  Google Scholar 

  62. Shao CY, Crary JF, Rao C, Sacktor TC, Mirra SS (2006) Atypical protein kinase C in neurodegnerative disease II: PKC i/l in tauophathies and a-synucleinophathies. J Neuropathol Exp Neurol 65:327–335

    Article  PubMed  CAS  Google Scholar 

  63. Sima AA, Hinton D (1983) Hirano-bodies in the distal symmetric polyneuropathy of the spontaneously diabetic BB-Wistar rat. Acta Neurol Scand 68:107–112

    PubMed  CAS  Google Scholar 

  64. Soriano Z, Pardee JD (2004) M34 Actin regulatory protein is a sensitive diagnostic marker for early- and late-stage mammary carcinomas. Clin Cancer Res 10:4437–4443

    Article  PubMed  CAS  Google Scholar 

  65. Tomonaga M (1974) Ultrastructure of Hirano bodies. Acta Neuropathol (Berl) 28:365–366

    Article  CAS  Google Scholar 

  66. Tomonaga M (1983) Hirano body in extraocular muscle. Acta Neuropathol (Berl) 60:309–313

    Article  CAS  Google Scholar 

  67. Yamamoto T, Hirano A (1985) Hirano bodies in the perikaryon of the Purkinje cell in a case of Alzheimer’s disease. Acta Neuropathol (Berl) 67:167–169

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Most of the microscopy was performed using the facilities of the University of Georgia Center for Advanced Ultrastructural Research. H4 astrocytoma and N2A cells with model Hirano bodies were kindly provided by Sangdeuk Ha, and Nisha Gupta, respectively. We thank Dr. Richard McCann for antibody to talin 1 produced in his laboratory, and for a panel of commercial antibodies to focal adhesion components. This work was supported by awards to RF and MF from NSF (MCB 98-08748), the Alzheimer’s Association (IIRG-00-2436), and NIH (1R01-NS04645101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Fechheimer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, R.C., Furukawa, R. & Fechheimer, M. A cell culture model for investigation of Hirano bodies. Acta Neuropathol 115, 205–217 (2008). https://doi.org/10.1007/s00401-007-0275-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-007-0275-9

Keywords

Navigation