Skip to main content

Advertisement

Log in

The potential effects of anti-diabetic medications on myocardial ischemia–reperfusion injury

  • Review
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Heart disease and stroke account for 65% of the deaths in people with diabetes mellitus (DM). DM and hyperglycemia cause systemic inflammation, endothelial dysfunction, a hypercoagulable state with impaired fibrinolysis and increased platelet degranulation, and reduced coronary collateral blood flow. DM also interferes with myocardial protection afforded by preconditioning and postconditioning. Newer anti-diabetic agents should not only reduce serum glucose and HbA1c levels, but also improve cardiovascular outcomes. The older sulfonylurea agent, glyburide, abolishes the benefits of ischemic and pharmacologic preconditioning, but newer sulfonylurea agents, such as glimepiride, may not interfere with preconditioning. GLP-1 analogs and sitagliptin, an oral dipeptidyl peptidase IV inhibitor, limit myocardial infarct size in animal models by increasing intracellular cAMP levels and activating protein kinase A, whereas metformin protects the heart by activating AMP-activated protein kinase. Both thiazolidinediones (rosiglitazone and pioglitazone) limit infarct size in animal models. The protective effect of pioglitazone is dependent on downstream activation of cytosolic phospholipase A2 and cyclooxygenase-2 with subsequent increased production of 15-epi-lipoxin A4, prostacyclin and 15-d-PGJ2. We conclude that agents used to treat DM have additional actions that have been shown to affect the ability of the heart to protect itself against ischemia–reperfusion injury in preclinical models. However, the effects of these agents in doses used in the clinical setting to minimize ischemia–reperfusion injury and to affect clinical outcomes in patients with DM have yet to be shown. The clinical implications as well as the mechanisms of protection should be further studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abdelrahman M, Sivarajah A, Thiemermann C (2005) Beneficial effects of PPAR-gamma ligands in ischemia–reperfusion injury, inflammation and shock. Cardiovasc Res 65:772–781. doi:10.1016/j.cardiores.2004.12.008

    Article  PubMed  CAS  Google Scholar 

  2. Adameova A, Harcarova A, Matejikova J, Pancza D, Kuzelova M, Carnicka S, Svec P, Bartekova M, Styk J, Ravingerova T (2009) Simvastatin alleviates myocardial contractile dysfunction and lethal ischemic injury in rat heart independent of cholesterol-lowering effects. Physiol Res 58:449–454

    PubMed  CAS  Google Scholar 

  3. Aleshin A, Ananthakrishnan R, Li Q, Rosario R, Lu Y, Qu W, Song F, Bakr S, Szabolcs M, D’Agati V, Liu R, Homma S, Schmidt AM, Yan SF, Ramasamy R (2008) RAGE modulates myocardial injury consequent to LAD infarction via impact on JNK and STAT signaling in a murine model. Am J Physiol Heart Circ Physiol 294:H1823–H1832. doi:10.1152/ajpheart.01210.2007

    Article  PubMed  CAS  Google Scholar 

  4. Arad M, Seidman CE, Seidman JG (2007) AMP-activated protein kinase in the heart: role during health and disease. Circ Res 100:474–488. doi:10.1161/01.RES.0000258446.23525.37

    Article  PubMed  CAS  Google Scholar 

  5. Atar S, Ye Y, Lin Y, Freeberg SY, Nishi SP, Rosanio S, Huang MH, Uretsky BF, Perez-Polo JR, Birnbaum Y (2006) Atorvastatin-induced cardioprotection is mediated by increasing inducible nitric oxide synthase and consequent S-nitrosylation of cyclooxygenase-2. Am J Physiol Heart Circ Physiol 290:H1960–H1968. doi:10.1152/ajpheart.01137.2005

    Article  PubMed  CAS  Google Scholar 

  6. Auchampach JA, Grover GJ, Gross GJ (1992) Blockade of ischaemic preconditioning in dogs by the novel ATP dependent potassium channel antagonist sodium 5-hydroxydecanoate. Cardiovasc Res 26:1054–1062. doi:10.1093/cvr/26.11.1054

    Article  PubMed  CAS  Google Scholar 

  7. Ban K, Kim KH, Cho CK, Sauve M, Diamandis EP, Backx PH, Drucker DJ, Husain M (2010) Glucagon-like peptide (GLP)-1(9-36)amide-mediated cytoprotection is blocked by exendin(9-39) yet does not require the known GLP-1 receptor. Endocrinology 151:1520–1531. doi:10.1210/en.2009-1197

    Article  PubMed  CAS  Google Scholar 

  8. Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M (2008) Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 117:2340–2350. doi:10.1161/CIRCULATIONAHA.107.739938

    Article  PubMed  CAS  Google Scholar 

  9. Bellis A, Castaldo D, Trimarco V, Monti MG, Chivasso P, Sadoshima J, Trimarco B, Morisco C (2009) Cross-talk between PKA and Akt protects endothelial cells from apoptosis in the late ischemic preconditioning. Arterioscler Thromb Vasc Biol 29:1207–1212. doi:10.1161/ATVBAHA.109.184135

    Article  PubMed  CAS  Google Scholar 

  10. Bernardo NL, D’Angelo M, Okubo S, Joy A, Kukreja RC (1999) Delayed ischemic preconditioning is mediated by opening of ATP-sensitive potassium channels in the rabbit heart. Am J Physiol 276:H1323–H1330

    PubMed  CAS  Google Scholar 

  11. Bernardo NL, Okubo S, Maaieh MM, Wood MA, Kukreja RC (1999) Delayed preconditioning with adenosine is mediated by opening of ATP-sensitive K(+) channels in rabbit heart. Am J Physiol 277:H128–H135

    PubMed  CAS  Google Scholar 

  12. Bhamra GS, Hausenloy DJ, Davidson SM, Carr RD, Paiva M, Wynne AM, Mocanu MM, Yellon DM (2008) Metformin protects the ischemic heart by the Akt-mediated inhibition of mitochondrial permeability transition pore opening. Basic Res Cardiol 103:274–284. doi:10.1007/s00395-007-0691-y

    Article  PubMed  CAS  Google Scholar 

  13. Bilinska M, Potocka J, Korzeniowska-Kubacka I, Piotrowicz R (2007) ‘Warm-up’ phenomenon in diabetic patients with stable angina treated with diet or sulfonylureas. Coron Artery Dis 18:455–462. doi:10.1097/MCA.0b013e3282a30676

    Article  PubMed  Google Scholar 

  14. Birnbaum Y, Long B, Qian J, Perez-Polo JR, Ye Y (2011) Pioglitazone limits myocardial infarct size, activates Akt, and upregulates cPLA2 and COX-2 in a PPAR-gamma-independent manner. Basic Res Cardiol 106:431–446. doi:10.1007/s00395-011-0162-3

    Article  PubMed  CAS  Google Scholar 

  15. Birnbaum Y, Ye Y, Lin Y, Freeberg SY, Huang MH, Perez-Polo JR, Uretsky BF (2007) Aspirin augments 15-epi-lipoxin A4 production by lipopolysaccharide, but blocks the pioglitazone and atorvastatin induction of 15-epi-lipoxin A4 in the rat heart. Prostaglandins Other Lipid Mediat 83:89–98. doi:10.1016/j.prostaglandins.2006.10.003

    Article  PubMed  CAS  Google Scholar 

  16. Birnbaum Y, Ye Y, Lin Y, Freeberg SY, Nishi SP, Martinez JD, Huang MH, Uretsky BF, Perez-Polo JR (2006) Augmentation of myocardial production of 15-epi-lipoxin-a4 by pioglitazone and atorvastatin in the rat. Circulation 114:929–935. doi:10.1161/CIRCULATIONAHA.106.629907

    Article  PubMed  CAS  Google Scholar 

  17. Birnbaum Y, Ye Y, Rosanio S, Tavackoli S, Hu ZY, Schwarz ER, Uretsky BF (2005) Prostaglandins mediate the cardioprotective effects of atorvastatin against ischemia–reperfusion injury. Cardiovasc Res 65:345–355. doi:10.1016/j.cardiores.2004.10.018

    Article  PubMed  CAS  Google Scholar 

  18. Boengler K, Schulz R, Heusch G (2009) Loss of cardioprotection with ageing. Cardiovasc Res 83:247–261. doi:10.1093/cvr/cvp033

    Article  PubMed  CAS  Google Scholar 

  19. Bogaty P, Kingma JG Jr, Robitaille NM, Plante S, Simard S, Charbonneau L, Dumesnil JG (1998) Attenuation of myocardial ischemia with repeated exercise in subjects with chronic stable angina: relation to myocardial contractility, intensity of exercise and the adenosine triphosphate-sensitive potassium channel. J Am Coll Cardiol 32:1665–1671

    Article  PubMed  CAS  Google Scholar 

  20. Bolli R, Dawn B, Xuan YT (2003) Role of the JAK-STAT pathway in protection against myocardial ischemia/reperfusion injury. Trends Cardiovasc Med 13:72–79. doi:10.1016/S1050-1738(02)00230-X

    Article  PubMed  CAS  Google Scholar 

  21. Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM (2005) Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes 54:146–151. doi:10.2337/diabetes.54.1.146

    Article  PubMed  CAS  Google Scholar 

  22. Bose AK, Mocanu MM, Carr RD, Yellon DM (2005) Glucagon like peptide-1 is protective against myocardial ischemia/reperfusion injury when given either as a preconditioning mimetic or at reperfusion in an isolated rat heart model. Cardiovasc Drugs Ther 19:9–11. doi:10.1007/s10557-005-6892-4

    Article  PubMed  Google Scholar 

  23. Bose AK, Mocanu MM, Carr RD, Yellon DM (2007) Myocardial ischaemia–reperfusion injury is attenuated by intact glucagon like peptide-1 (GLP-1) in the in vitro rat heart and may involve the p70s6K pathway. Cardiovasc Drugs Ther 21:253–256. doi:10.1007/s10557-007-6030-6

    Article  PubMed  CAS  Google Scholar 

  24. Brunton LL, Lazo JS, Parker KL (2006) Goodman & Gilman’s the pharmacological basis of therapeutics, 11th edn. McGraw-Hill, New York

    Google Scholar 

  25. Calnek DS, Mazzella L, Roser S, Roman J, Hart CM (2003) Peroxisome proliferator-activated receptor gamma ligands increase release of nitric oxide from endothelial cells. Arterioscler Thromb Vasc Biol 23:52–57. doi:10.1161/01.ATV.0000044461.01844.C9

    Article  PubMed  CAS  Google Scholar 

  26. Calvert JW, Gundewar S, Jha S, Greer JJ, Bestermann WH, Tian R, Lefer DJ (2008) Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes 57:696–705. doi:10.2337/db07-1098

    Article  PubMed  CAS  Google Scholar 

  27. Cleveland JC Jr, Meldrum DR, Rowland RT, Banerjee A, Harken AH (1997) Adenosine preconditioning of human myocardium is dependent upon the ATP-sensitive K+ channel. J Mol Cell Cardiol 29:175–182. doi:10.1006/jmcc.1996.0262

    Article  PubMed  CAS  Google Scholar 

  28. D’Souza SP, Yellon DM, Martin C, Schulz R, Heusch G, Onody A, Ferdinandy P, Baxter GF (2003) B-type natriuretic peptide limits infarct size in rat isolated hearts via KATP channel opening. Am J Physiol Heart Circ Physiol 284:H1592–H1600. doi:10.1152/ajpheart.00902.2002

    PubMed  Google Scholar 

  29. Deedwania P, Kosiborod M, Barrett E, Ceriello A, Isley W, Mazzone T, Raskin P (2008) Hyperglycemia and acute coronary syndrome: a scientific statement from the American Heart Association Diabetes Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 117:1610–1619. doi:10.1161/CIRCULATIONAHA.107.188629

    Article  PubMed  Google Scholar 

  30. Detaille D, Guigas B, Chauvin C, Batandier C, Fontaine E, Wiernsperger N, Leverve X (2005) Metformin prevents high-glucose-induced endothelial cell death through a mitochondrial permeability transition-dependent process. Diabetes 54:2179–2187. doi:10.2337/diabetes.54.7.2179

    Article  PubMed  CAS  Google Scholar 

  31. Diabetes Statistics (2011) American Diabetes Association. http://www.diabetes.org/diabetes-statistics.jsp. Accessed January 4 2011

  32. Donato M, D’Annunzio V, Berg G, Gonzalez G, Schreier L, Morales C, Wikinski RL, Gelpi RJ (2007) Ischemic postconditioning reduces infarct size by activation of A1 receptors and K+ (ATP) channels in both normal and hypercholesterolemic rabbits. J Cardiovasc Pharmacol 49:287–292. doi:10.1097/FJC.0b013e31803c55fe

    Article  PubMed  CAS  Google Scholar 

  33. Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK, Skene AM, Tan MH, Lefebvre PJ, Murray GD, Standl E, Wilcox RG, Wilhelmsen L, Betteridge J, Birkeland K, Golay A, Heine RJ, Koranyi L, Laakso M, Mokan M, Norkus A, Pirags V, Podar T, Scheen A, Scherbaum W, Schernthaner G, Schmitz O, Skrha J, Smith U, Taton J (2005) Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366:1279–1289. doi:10.1016/S0140-6736(05)67528-9

    Article  PubMed  CAS  Google Scholar 

  34. Doyle ME, Egan JM (2007) Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther 113:546–593. doi:10.1016/j.pharmthera.2006.11.007

    Article  PubMed  CAS  Google Scholar 

  35. Drenger B, Ostrovsky IA, Barak M, Nechemia-Arbely Y, Ziv E, Axelrod JH (2011) Diabetes blockade of sevoflurane postconditioning is not restored by insulin in the rat heart: phosphorylated signal transducer and activator of transcription 3- and phosphatidylinositol 3-kinase-mediated inhibition. Anesthesiology. doi:10.1097/ALN.0b013e31820efafd

  36. Drucker DJ (2006) The biology of incretin hormones. Cell Metab 3:153–165. doi:10.1016/j.cmet.2006.01.004

    Article  PubMed  CAS  Google Scholar 

  37. Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368:1696–1705. doi:10.1016/S0140-6736(06)69705-5

    Article  PubMed  CAS  Google Scholar 

  38. Drucker DJ, Philippe J, Mojsov S, Chick WL, Habener JF (1987) Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci USA 84:3434–3438. doi:10.1073/pnas.84.10.3434

    Article  PubMed  CAS  Google Scholar 

  39. UK Prospective Diabetes Study (UKPDS) Group (1998) Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352:854–865. (S0140673698070378 pii)

    Google Scholar 

  40. Elliott GT, Comerford ML, Smith JR, Zhao L (1996) Myocardial ischemia/reperfusion protection using monophosphoryl lipid A is abrogated by the ATP-sensitive potassium channel blocker, glibenclamide. Cardiovasc Res 32:1071–1080. doi:10.1016/S0008-6363(96)00154-X

    Article  PubMed  CAS  Google Scholar 

  41. Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M, Quagliaro L, Ceriello A, Giugliano D (2002) Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation 106:2067–2072. doi:10.1161/01.CIR.0000034509.14906.AE

    Article  PubMed  CAS  Google Scholar 

  42. U.S. Food and Drug Administration (2011) FDA Announces New Recommendations on Evaluating Cardiovascular Risk in Drugs Intended to Treat Type 2 Diabetes. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/2008/ucm116994.htm. Accessed January 4 2011

  43. Ferreira BM, Moffa PJ, Falcao A, Uchida A, Camargo P, Pereyra P, Soares PR, Hueb W, Ramires JA (2005) The effects of glibenclamide, a K(ATP) channel blocker, on the warm-up phenomenon. Ann Noninvasive Electrocardiol 10:356–362. doi:10.1111/j.1542-474X.2005.00650.x

    Article  PubMed  Google Scholar 

  44. Ferroni P, Basili S, Falco A, Davi G (2004) Platelet activation in type 2 diabetes mellitus. J Thromb Haemost 2:1282–1291. doi:10.1111/j.1538-7836.2004.00836.x

    Article  PubMed  CAS  Google Scholar 

  45. Flagg TP, Nichols CG (2005) Sarcolemmal K(ATP) channels: what do we really know? J Mol Cell Cardiol 39:61–70. doi:10.1016/j.yjmcc.2005.01.005

    Article  PubMed  CAS  Google Scholar 

  46. Ghaboura N, Tamareille S, Ducluzeau PH, Grimaud L, Loufrani L, Croue A, Tourmen Y, Henrion D, Furber A, Prunier F (2011) Diabetes mellitus abrogates erythropoietin-induced cardioprotection against ischemic-reperfusion injury by alteration of the RISK/GSK-3beta signaling. Basic Res Cardiol 106:147–162. doi:10.1007/s00395-010-0130-3

    Article  PubMed  CAS  Google Scholar 

  47. Gonon AT, Bulhak A, Labruto F, Sjoquist PO, Pernow J (2007) Cardioprotection mediated by rosiglitazone, a peroxisome proliferator-activated receptor gamma ligand, in relation to nitric oxide. Basic Res Cardiol 102:80–89. doi:10.1007/s00395-006-0613-4

    Article  PubMed  CAS  Google Scholar 

  48. Gres P, Schulz R, Jansen J, Umschlag C, Heusch G (2002) Involvement of endogenous prostaglandins in ischemic preconditioning in pigs. Cardiovasc Res 55:626–632. doi:10.1016/S0008-6363(01)00505-3

    Article  PubMed  CAS  Google Scholar 

  49. Gribble FM, Ashcroft FM (2000) Sulfonylurea sensitivity of adenosine triphosphate-sensitive potassium channels from beta cells and extrapancreatic tissues. Metabolism 49:3–6. doi:10.1053/meta.2000.17822

    Article  PubMed  CAS  Google Scholar 

  50. Gross GJ, Auchampach JA (1992) Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res 70:223–233

    PubMed  CAS  Google Scholar 

  51. Gross GJ, Peart JN (2003) KATP channels and myocardial preconditioning: an update. Am J Physiol Heart Circ Physiol 285:H921–H930. doi:10.1152/ajpheart.00421.2003

    PubMed  CAS  Google Scholar 

  52. Gu W, Kehl F, Krolikowski JG, Pagel PS, Warltier DC, Kersten JR (2008) Simvastatin restores ischemic preconditioning in the presence of hyperglycemia through a nitric oxide-mediated mechanism. Anesthesiology 108:634–642. doi:10.1097/ALN.0b013e3181672590

    Article  PubMed  CAS  Google Scholar 

  53. Gundewar S, Calvert JW, Jha S, Toedt-Pingel I, Ji SY, Nunez D, Ramachandran A, Anaya-Cisneros M, Tian R, Lefer DJ (2009) Activation of AMP-activated protein kinase by metformin improves left ventricular function and survival in heart failure. Circ Res 104:403–411. doi:10.1161/CIRCRESAHA.108.190918

    Article  PubMed  CAS  Google Scholar 

  54. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339:229–234. doi:10.1056/NEJM199807233390404

    Article  PubMed  CAS  Google Scholar 

  55. Hausenloy DJ (2009) Signalling pathways in ischaemic postconditioning. Thromb Haemost 101:626–634. doi:10.1160/TH08-11-0734

    PubMed  CAS  Google Scholar 

  56. Hausenloy DJ, Baxter G, Bell R, Botker HE, Davidson SM, Downey J, Heusch G, Kitakaze M, Lecour S, Mentzer R, Mocanu MM, Ovize M, Schulz R, Shannon R, Walker M, Walkinshaw G, Yellon DM (2010) Translating novel strategies for cardioprotection: the Hatter Workshop Recommendations. Basic Res Cardiol 105:677–686. doi:10.1007/s00395-010-0121-4

    Article  PubMed  Google Scholar 

  57. Hausenloy DJ, Maddock HL, Baxter GF, Yellon DM (2002) Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning? Cardiovasc Res 55:534–543. doi:10.1016/S0008-6363(02)00455-8

    Article  PubMed  CAS  Google Scholar 

  58. Hausenloy DJ, Yellon DM (2003) The mitochondrial permeability transition pore: its fundamental role in mediating cell death during ischaemia and reperfusion. J Mol Cell Cardiol 35:339–341. doi:10.1016/S0022-2828(03)00043-9

    Article  PubMed  CAS  Google Scholar 

  59. Hausenloy DJ, Yellon DM (2006) Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res 70:240–253. doi:10.1016/j.cardiores.2006.01.017

    Article  PubMed  CAS  Google Scholar 

  60. Heinzel FR, Luo Y, Li X, Boengler K, Buechert A, Garcia-Dorado D, Di Lisa F, Schulz R, Heusch G (2005) Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Circ Res 97:583–586. doi:10.1161/01.RES.0000181171.65293.65

    Article  PubMed  CAS  Google Scholar 

  61. Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118:1915–1919. doi:10.1161/CIRCULATIONAHA.108.805242

    Article  PubMed  Google Scholar 

  62. Heusch G, Boengler K, Schulz R (2010) Inhibition of mitochondrial permeability transition pore opening: the Holy Grail of cardioprotection. Basic Res Cardiol 105:151–154. doi:10.1007/s00395-009-0080-9

    Article  PubMed  Google Scholar 

  63. Heusch G, Skyschally A, Schulz R (2011) The in situ pig heart with regional ischemia/reperfusion—ready for translation. J Mol Cell Cardiol 50:951–963. doi:10.1016/j.yjmcc.2011.02.016

    Article  PubMed  CAS  Google Scholar 

  64. Holst JJ (2007) The physiology of glucagon-like peptide 1. Physiol Rev 87:1409–1439. doi:10.1152/physrev.00034.2006

    Article  PubMed  CAS  Google Scholar 

  65. Honda T, Kaikita K, Tsujita K, Hayasaki T, Matsukawa M, Fuchigami S, Sugiyama S, Sakashita N, Ogawa H, Takeya M (2008) Pioglitazone, a peroxisome proliferator-activated receptor-gamma agonist, attenuates myocardial ischemia–reperfusion injury in mice with metabolic disorders. J Mol Cell Cardiol 44:915–926. doi:10.1016/j.yjmcc.2008.03.004

    Article  PubMed  CAS  Google Scholar 

  66. Horimoto H, Nakai Y, Mieno S, Nomura Y, Nakahara K, Sasaki S (2002) Oral hypoglycemic sulfonylurea glimepiride preserves the myoprotective effects of ischemic preconditioning. J Surg Res 105:181–188. doi:10.1006/jsre.2002.6379

    Article  PubMed  CAS  Google Scholar 

  67. Hotta H, Miura T, Miki T, Togashi N, Maeda T, Kim SJ, Tanno M, Yano T, Kuno A, Itoh T, Satoh T, Terashima Y, Ishikawa S, Shimamoto K (2010) Angiotensin II type 1 receptor-mediated upregulation of calcineurin activity underlies impairment of cardioprotective signaling in diabetic hearts. Circ Res 106:129–132. doi:10.1161/CIRCRESAHA.109.205385

    Article  PubMed  CAS  Google Scholar 

  68. Huisamen B, Genade S, Lochner A (2008) Signalling pathways activated by glucagon-like peptide-1 (7–36) amide in the rat heart and their role in protection against ischaemia. Cardiovasc J Afr 19:77–83

    PubMed  CAS  Google Scholar 

  69. Huisamen B, Genis A, Marais E, Lochner A (2010) Pre-treatment with a DPP-4 inhibitor is infarct sparing in hearts from obese, pre-diabetic rats. Cardiovasc Drugs Ther. doi:10.1007/s10557-010-6271-7

  70. Hwang J, Kleinhenz DJ, Lassegue B, Griendling KK, Dikalov S, Hart CM (2005) Peroxisome proliferator-activated receptor-gamma ligands regulate endothelial membrane superoxide production. Am J Physiol Cell Physiol 288:C899–C905. doi:10.1152/ajpcell.00474.2004

    Article  PubMed  CAS  Google Scholar 

  71. Ichiki T, Tokunou T, Fukuyama K, Iino N, Masuda S, Takeshita A (2004) 15-Deoxy-delta12, 14-prostaglandin J2 and thiazolidinediones transactivate epidermal growth factor and platelet-derived growth factor receptors in vascular smooth muscle cells. Biochem Biophys Res Commun 323:402–408. doi:10.1016/j.bbrc.2004.08.101

    Article  PubMed  CAS  Google Scholar 

  72. Ihm SH, Chang K, Kim HY, Baek SH, Youn HJ, Seung KB, Kim JH (2010) Peroxisome proliferator-activated receptor-gamma activation attenuates cardiac fibrosis in type 2 diabetic rats: the effect of rosiglitazone on myocardial expression of receptor for advanced glycation end products and of connective tissue growth factor. Basic Res Cardiol 105:399–407. doi:10.1007/s00395-009-0071-x

    Article  PubMed  CAS  Google Scholar 

  73. Inserte J, Garcia-Dorado D, Ruiz-Meana M, Agullo L, Pina P, Soler-Soler J (2004) Ischemic preconditioning attenuates calpain-mediated degradation of structural proteins through a protein kinase A-dependent mechanism. Cardiovasc Res 64:105–114. doi:10.1016/j.cardiores.2004.06.001

    Article  PubMed  CAS  Google Scholar 

  74. Ishihara M, Inoue I, Kawagoe T, Shimatani Y, Kurisu S, Nishioka K, Umemura T, Nakamura S, Yoshida M (2003) Effect of acute hyperglycemia on the ischemic preconditioning effect of prodromal angina pectoris in patients with a first anterior wall acute myocardial infarction. Am J Cardiol 92:288–291. doi:10.1016/S0002-9149(03)00627-1

    Article  PubMed  Google Scholar 

  75. Ito H, Nakano A, Kinoshita M, Matsumori A (2003) Pioglitazone, a peroxisome proliferator-activated receptor-gamma agonist, attenuates myocardial ischemia/reperfusion injury in a rat model. Lab Invest 83:1715–1721. doi:10.1097/01.LAB.0000106724.29121.DA

    Article  PubMed  CAS  Google Scholar 

  76. Iwai T, Tanonaka K, Koshimizu M, Takeo S (2000) Preservation of mitochondrial function by diazoxide during sustained ischaemia in the rat heart. Br J Pharmacol 129:1219–1227. doi:10.1038/sj.bjp.0703148

    Article  PubMed  CAS  Google Scholar 

  77. Iwasa M, Kobayashi H, Yasuda S, Kawamura I, Sumi S, Yamada Y, Shiraki T, Yamaki T, Ushikoshi H, Aoyama T, Nishigaki K, Takemura G, Fujiwara T, Fujiwara H, Minatoguchi S (2010) Antidiabetic drug voglibose is protective against ischemia–reperfusion injury through glucagon-like peptide 1 receptors and the phosphoinositide 3-kinase-Akt-endothelial nitric oxide synthase pathway in rabbits. J Cardiovasc Pharmacol 55:625–634. doi:10.1097/FJC.0b013e3181dcd240

    Article  PubMed  CAS  Google Scholar 

  78. Johnson JA, Majumdar SR, Simpson SH, Toth EL (2002) Decreased mortality associated with the use of metformin compared with sulfonylurea monotherapy in type 2 diabetes. Diabet Care 25:2244–2248. doi:10.2337/diacare.25.12.2244

    Article  CAS  Google Scholar 

  79. Joyeux M, Bouchard JF, Lamontagne D, Godin-Ribuot D, Ribuot C (2000) Heat stress-induced protection of endothelial function against ischaemic injury is abolished by ATP-sensitive potassium channel blockade in the isolated rat heart. Br J Pharmacol 130:345–350. doi:10.1038/sj.bjp.0703312

    Article  PubMed  CAS  Google Scholar 

  80. Joyeux M, Godin-Ribuot D, Ribuot C (1998) Resistance to myocardial infarction induced by heat stress and the effect of ATP-sensitive potassium channel blockade in the rat isolated heart. Br J Pharmacol 123:1085–1088. doi:10.1038/sj.bjp.0701710

    Article  PubMed  CAS  Google Scholar 

  81. Katakam PV, Jordan JE, Snipes JA, Tulbert CD, Miller AW, Busija DW (2007) Myocardial preconditioning against ischemia–reperfusion injury is abolished in Zucker obese rats with insulin resistance. Am J Physiol Regul Integr Comp Physiol 292:R920–R926. doi:10.1152/ajpregu.00520.2006

    Article  PubMed  CAS  Google Scholar 

  82. Kavianipour M, Ehlers MR, Malmberg K, Ronquist G, Ryden L, Wikstrom G, Gutniak M (2003) Glucagon-like peptide-1 (7-36) amide prevents the accumulation of pyruvate and lactate in the ischemic and non-ischemic porcine myocardium. Peptides 24:569–578. doi:10.1016/S0196-9781(03)00108-6

    Article  PubMed  CAS  Google Scholar 

  83. Kawabata H, Ishikawa K (2003) Cardioprotection by metformin is abolished by a nitric oxide synthase inhibitor in ischemic rabbit hearts. Hypertens Res 26:107–110. doi:10.1291/hypres.26.107

    Article  PubMed  CAS  Google Scholar 

  84. Kersten JR, Montgomery MW, Ghassemi T, Gross ER, Toller WG, Pagel PS, Warltier DC (2001) Diabetes and hyperglycemia impair activation of mitochondrial K(ATP) channels. Am J Physiol Heart Circ Physiol 280:H1744–H1750

    PubMed  CAS  Google Scholar 

  85. Kersten JR, Schmeling TJ, Orth KG, Pagel PS, Warltier DC (1998) Acute hyperglycemia abolishes ischemic preconditioning in vivo. Am J Physiol 275:H721–H725

    PubMed  CAS  Google Scholar 

  86. Kersten JR, Toller WG, Gross ER, Pagel PS, Warltier DC (2000) Diabetes abolishes ischemic preconditioning: role of glucose, insulin, and osmolality. Am J Physiol Heart Circ Physiol 278:H1218–H1224

    PubMed  CAS  Google Scholar 

  87. Kersten JR, Toller WG, Tessmer JP, Pagel PS, Warltier DC (2001) Hyperglycemia reduces coronary collateral blood flow through a nitric oxide-mediated mechanism. Am J Physiol Heart Circ Physiol 281:H2097–H2104

    PubMed  CAS  Google Scholar 

  88. Khandoudi N, Delerive P, Berrebi-Bertrand I, Buckingham RE, Staels B, Bril A (2002) Rosiglitazone, a peroxisome proliferator-activated receptor-gamma, inhibits the Jun NH(2)-terminal kinase/activating protein 1 pathway and protects the heart from ischemia/reperfusion injury. Diabetes 51:1507–1514. doi:10.2337/diabetes.51.5.1507

    Article  PubMed  CAS  Google Scholar 

  89. Kilter H, Werner M, Roggia C, Reil JC, Schafers HJ, Kintscher U, Bohm M (2009) The PPAR-gamma agonist rosiglitazone facilitates Akt rephosphorylation and inhibits apoptosis in cardiomyocytes during hypoxia/reoxygenation. Diabet Obes Metab 11:1060–1067. doi:10.1111/j.1463-1326.2009.01097.x

    Article  CAS  Google Scholar 

  90. Kim HS, Cho JE, Hwang KC, Shim YH, Lee JH, Kwak YL (2010) Diabetes mellitus mitigates cardioprotective effects of remifentanil preconditioning in ischemia-reperfused rat heart in association with anti-apoptotic pathways of survival. Eur J Pharmacol 628:132–139. doi:10.1016/j.ejphar.2009.11.032

    Article  PubMed  CAS  Google Scholar 

  91. Kim SF, Huri DA, Snyder SH (2005) Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. Science 310:1966–1970. doi:10.1126/science.1119407

    Article  PubMed  CAS  Google Scholar 

  92. Klamann A, Sarfert P, Launhardt V, Schulte G, Schmiegel WH, Nauck MA (2000) Myocardial infarction in diabetic vs non-diabetic subjects. Survival and infarct size following therapy with sulfonylureas (glibenclamide). Eur Heart J 21:220–229. doi:10.1053/euhj.1999.1999

    Article  PubMed  CAS  Google Scholar 

  93. Klepzig H, Kober G, Matter C, Luus H, Schneider H, Boedeker KH, Kiowski W, Amann FW, Gruber D, Harris S, Burger W (1999) Sulfonylureas and ischaemic preconditioning; a double-blind, placebo-controlled evaluation of glimepiride and glibenclamide. Eur Heart J 20:439–446. doi:10.1053/euhj.1998.1242

    Article  PubMed  CAS  Google Scholar 

  94. Krenz M, Baines CP, Heusch G, Downey JM, Cohen MV (2001) Acute alcohol-induced protection against infarction in rabbit hearts: differences from and similarities to ischemic preconditioning. J Mol Cell Cardiol 33:2015–2022. doi:10.1006/jmcc.2001.1465

    Article  PubMed  CAS  Google Scholar 

  95. Kristensen J, Mortensen UM, Schmidt M, Nielsen PH, Nielsen TT, Maeng M (2009) Lack of cardioprotection from subcutaneously and preischemic administered liraglutide in a closed chest porcine ischemia reperfusion model. BMC Cardiovasc Disord 9:31. doi:10.1186/1471-2261-9-31

    Article  PubMed  CAS  Google Scholar 

  96. Lee K, Boden P (1997) Troglitazone inhibits type 2KATP channel activity and depolarises tolbutamide-sensitive neurones in the rat ventromedial hypothalamus. Brain Res 751:165–168. doi:10.1016/S0006-8993(97)00046-2

    Article  PubMed  CAS  Google Scholar 

  97. Lee K, Ibbotson T, Richardson PJ, Boden PR (1996) Inhibition of KATP channel activity by troglitazone in CRI-G1 insulin-secreting cells. Eur J Pharmacol 313:163–167. doi:10.1016/0014-2999(96)00619-X

    Article  PubMed  CAS  Google Scholar 

  98. Lee TM, Chou TF (2003) Impairment of myocardial protection in type 2 diabetic patients. J Clin Endocrinol Metab 88:531–537. doi:10.1210/jc.2002-020904

    Article  PubMed  CAS  Google Scholar 

  99. Lee TM, Chou TF (2003) Troglitazone administration limits infarct size by reduced phosphorylation of canine myocardial connexin43 proteins. Am J Physiol Heart Circ Physiol 285:H1650–H1659. doi:10.1152/ajpheart.00407.2002

    PubMed  CAS  Google Scholar 

  100. Legtenberg RJ, Houston RJ, Oeseburg B, Smits P (2002) Metformin improves cardiac functional recovery after ischemia in rats. Horm Metab Res 34:182–185. doi:10.1055/s-2002-26705

    Article  PubMed  CAS  Google Scholar 

  101. Lincoff AM, Wolski K, Nicholls SJ, Nissen SE (2007) Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA 298:1180–1188. doi:10.1001/jama.298.10.1180

    Article  PubMed  CAS  Google Scholar 

  102. Lindhardt TB, Abedini S, Olesen RM, Haunso S, Gadsboll N (2006) Effects of pharmacological modulation of the ATP-sensitive potassium channels on the development of warm-up angina pectoris. Cardiology 105:17–21. doi:10.1159/000088266

    Article  PubMed  CAS  Google Scholar 

  103. Liu HR, Tao L, Gao E, Lopez BL, Christopher TA, Willette RN, Ohlstein EH, Yue TL, Ma XL (2004) Anti-apoptotic effects of rosiglitazone in hypercholesterolemic rabbits subjected to myocardial ischemia and reperfusion. Cardiovasc Res 62:135–144. doi:10.1016/j.cardiores.2003.12.027

    Article  PubMed  CAS  Google Scholar 

  104. Liu HR, Tao L, Gao E, Qu Y, Lau WB, Lopez BL, Christopher TA, Koch W, Yue TL, Ma XL (2009) Rosiglitazone inhibits hypercholesterolaemia-induced myeloperoxidase upregulation—a novel mechanism for the cardioprotective effects of PPAR agonists. Cardiovasc Res 81:344–352. doi:10.1093/cvr/cvn308

    Article  PubMed  CAS  Google Scholar 

  105. Loos B, Smith R, Engelbrecht AM (2008) Ischaemic preconditioning and TNF-alpha-mediated preconditioning is associated with a differential cPLA2 translocation pattern in early ischaemia. Prostaglandins Leukot Essent Fatty Acids 78:403–413. doi:10.1016/j.plefa.2008.05.002

    Article  PubMed  CAS  Google Scholar 

  106. Lu L, Reiter MJ, Xu Y, Chicco A, Greyson CR, Schwartz GG (2008) Thiazolidinedione drugs block cardiac KATP channels and may increase propensity for ischaemic ventricular fibrillation in pigs. Diabetologia 51:675–685. doi:10.1007/s00125-008-0924-0

    Article  PubMed  CAS  Google Scholar 

  107. Maddock HL, Siedlecka SM, Yellon DM (2004) Myocardial protection from either ischaemic preconditioning or nicorandil is not blocked by gliclazide. Cardiovasc Drugs Ther 18:113–119. doi:10.1023/B:CARD.0000029028.75316.5e

    Article  PubMed  CAS  Google Scholar 

  108. Matsubara M, Kanemoto S, Leshnower BG, Albone EF, Hinmon R, Plappert T, Gorman JH 3rd, Gorman RC (2009) Single dose GLP-1-Tf ameliorates myocardial ischemia/reperfusion injury. J Surg Res 165:38–45. doi:10.1016/j.jss.2009.03.016

    Article  PubMed  CAS  Google Scholar 

  109. Mazzone T, Meyer PM, Feinstein SB, Davidson MH, Kondos GT, D’Agostino RB Sr, Perez A, Provost JC, Haffner SM (2006) Effect of pioglitazone compared with glimepiride on carotid intima-media thickness in type 2 diabetes: a randomized trial. JAMA 296:2572–2581. doi:10.1001/jama.296.21.joc60158

    Article  PubMed  CAS  Google Scholar 

  110. Meder B, Keller A, Vogel B, Haas J, Sedaghat-Hamedani F, Kayvanpour E, Just S, Borries A, Rudloff J, Leidinger P, Meese E, Katus HA, Rottbauer W (2011) MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Res Cardiol 106:13–23. doi:10.1007/s00395-010-0123-2

    Article  PubMed  CAS  Google Scholar 

  111. Mocanu MM, Gadgil S, Yellon DM, Baxter GF (1999) Mibefradil, a T-type and L-type calcium channel blocker, limits infarct size through a glibenclamide-sensitive mechanism. Cardiovasc Drugs Ther 13:115–122. doi:10.1023/A:1007732025184

    Article  PubMed  CAS  Google Scholar 

  112. Mocanu MM, Maddock HL, Baxter GF, Lawrence CL, Standen NB, Yellon DM (2001) Glimepiride, a novel sulfonylurea, does not abolish myocardial protection afforded by either ischemic preconditioning or diazoxide. Circulation 103:3111–3116

    PubMed  CAS  Google Scholar 

  113. Molavi B, Chen J, Mehta JL (2006) Cardioprotective effects of rosiglitazone are associated with selective overexpression of type 2 angiotensin receptors and inhibition of p42/44 MAPK. Am J Physiol Heart Circ Physiol 291:H687–H693. doi:10.1152/ajpheart.00926.2005

    Article  PubMed  CAS  Google Scholar 

  114. Morohoshi M, Fujisawa K, Uchimura I, Numano F (1996) Glucose-dependent interleukin 6 and tumor necrosis factor production by human peripheral blood monocytes in vitro. Diabetes 45:954–959. doi:10.2337/diabetes.45.7.954

    Article  PubMed  Google Scholar 

  115. Mukamal KJ, Nesto RW, Cohen MC, Muller JE, Maclure M, Sherwood JB, Mittleman MA (2001) Impact of diabetes on long-term survival after acute myocardial infarction: comparability of risk with prior myocardial infarction. Diabet Care 24:1422–1427. doi:10.2337/diacare.24.8.1422

    Article  CAS  Google Scholar 

  116. Munch-Ellingsen J, Bugge E, Ytrehus K (1996) Blockade of the KATP-channel by glibenclamide aggravates ischemic injury, and counteracts ischemic preconditioning. Basic Res Cardiol 91:382–388. doi:10.1007/BF00788718

    PubMed  CAS  Google Scholar 

  117. Nakano A, Liu GS, Heusch G, Downey JM, Cohen MV (2000) Exogenous nitric oxide can trigger a preconditioned state through a free radical mechanism, but endogenous nitric oxide is not a trigger of classical ischemic preconditioning. J Mol Cell Cardiol 32:1159–1167. doi:10.1006/jmcc.2000.1152

    Article  PubMed  CAS  Google Scholar 

  118. Nieszner E, Posa I, Kocsis E, Pogatsa G, Preda I, Koltai MZ (2002) Influence of diabetic state and that of different sulfonylureas on the size of myocardial infarction with and without ischemic preconditioning in rabbits. Exp Clin Endocrinol Diabet 110:212–218. doi:10.1055/s-2002-33069

    Article  CAS  Google Scholar 

  119. Nikolaidis LA, Mankad S, Sokos GG, Miske G, Shah A, Elahi D, Shannon RP (2004) Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 109:962–965. doi:10.1161/01.CIR.0000120505.91348.58

    Article  PubMed  CAS  Google Scholar 

  120. Nissen SE, Nicholls SJ, Wolski K, Nesto R, Kupfer S, Perez A, Jure H, De Larochelliere R, Staniloae CS, Mavromatis K, Saw J, Hu B, Lincoff AM, Tuzcu EM (2008) Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA 299:1561–1573. doi:10.1001/jama.299.13.1561

    Article  PubMed  CAS  Google Scholar 

  121. Noyan-Ashraf MH, Momen MA, Ban K, Sadi AM, Zhou YQ, Riazi AM, Baggio LL, Henkelman RM, Husain M, Drucker DJ (2009) GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes 58:975–983. doi:10.2337/db08-1193

    Article  PubMed  CAS  Google Scholar 

  122. National Center for Chronic Disease Prevention and Health Promotion (2008) Number of people with diabetes continues to increase, Division of Diabetes Translation, http://www.cdc.gov/Features/diabetesfactsheet/. Accessed January 4 2011

  123. O’Rourke B (2000) Myocardial K(ATP) channels in preconditioning. Circ Res 87:845–855

    PubMed  Google Scholar 

  124. Ohtani K, Dimmeler S (2011) Control of cardiovascular differentiation by microRNAs. Basic Res Cardiol 106:5–11. doi:10.1007/s00395-010-0139-7

    Article  PubMed  CAS  Google Scholar 

  125. Ossum A, van Deurs U, Engstrom T, Jensen JS, Treiman M (2009) The cardioprotective and inotropic components of the postconditioning effects of GLP-1 and GLP-1(9-36)a in an isolated rat heart. Pharmacol Res 60:411–417. doi:10.1016/j.phrs.2009.06.004

    Article  PubMed  CAS  Google Scholar 

  126. Oudit GY, Penninger JM (2009) Cardiac regulation by phosphoinositide 3-kinases and PTEN. Cardiovasc Res 82:250–260. doi:10.1093/cvr/cvp014

    Article  PubMed  CAS  Google Scholar 

  127. Ovize M, Baxter GF, Di Lisa F, Ferdinandy P, Garcia-Dorado D, Hausenloy DJ, Heusch G, Vinten-Johansen J, Yellon DM, Schulz R (2010) Postconditioning and protection from reperfusion injury: where do we stand? Position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res 87:406–423. doi:10.1093/cvr/cvq129

    Article  PubMed  CAS  Google Scholar 

  128. Ovunc K (2000) Effects of glibenclamide, a K(ATP) channel blocker, on warm-up phenomenon in type II diabetic patients with chronic stable angina pectoris. Clin Cardiol 23:535–539

    Article  PubMed  CAS  Google Scholar 

  129. Owen MR, Doran E, Halestrap AP (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348 Pt 3:607–614. doi:10.1042/0264-6021:3480607

    Google Scholar 

  130. Pain T, Yang XM, Critz SD, Yue Y, Nakano A, Liu GS, Heusch G, Cohen MV, Downey JM (2000) Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals. Circ Res 87:460–466

    PubMed  CAS  Google Scholar 

  131. Paiva M, Riksen NP, Davidson SM, Hausenloy DJ, Monteiro P, Goncalves L, Providencia L, Rongen GA, Smits P, Mocanu MM, Yellon DM (2009) Metformin prevents myocardial reperfusion injury by activating the adenosine receptor. J Cardiovasc Pharmacol 53:373–378. doi:10.1097/FJC.0b013e31819fd4e7

    Article  PubMed  CAS  Google Scholar 

  132. Paiva MA, Goncalves LM, Providencia LA, Davidson SM, Yellon DM, Mocanu MM (2010) Transitory activation of AMPK at reperfusion protects the ischaemic-reperfused rat myocardium against infarction. Cardiovasc Drugs Ther 24:25–32. doi:10.1007/s10557-010-6222-3

    Article  PubMed  CAS  Google Scholar 

  133. Pandolfi A, Cetrullo D, Polishuck R, Alberta MM, Calafiore A, Pellegrini G, Vitacolonna E, Capani F, Consoli A (2001) Plasminogen activator inhibitor type 1 is increased in the arterial wall of type II diabetic subjects. Arterioscler Thromb Vasc Biol 21:1378–1382. doi:10.1161/hq0801.093667

    Article  PubMed  CAS  Google Scholar 

  134. Pandolfi A, Giaccari A, Cilli C, Alberta MM, Morviducci L, De Filippis EA, Buongiorno A, Pellegrini G, Capani F, Consoli A (2001) Acute hyperglycemia and acute hyperinsulinemia decrease plasma fibrinolytic activity and increase plasminogen activator inhibitor type 1 in the rat. Acta Diabetol 38:71–76. doi:10.1007/s005920170016

    Article  PubMed  CAS  Google Scholar 

  135. Park SY, Lee JH, Ha M, Nam JW, Kim VN (2009) miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol 16:23–29. doi:10.1038/nsmb.1533

    Article  PubMed  CAS  Google Scholar 

  136. Park Y, Yang J, Zhang H, Chen X, Zhang C (2011) Effect of PAR2 in regulating TNF-alpha and NAD(P)H oxidase in coronary arterioles in type 2 diabetic mice. Basic Res Cardiol 106:111–123. doi:10.1007/s00395-010-0129-9

    Article  PubMed  CAS  Google Scholar 

  137. Patel CB, De Lemos JA, Wyne KL, McGuire DK (2006) Thiazolidinediones and risk for atherosclerosis: pleiotropic effects of PPar gamma agonism. Diab Vasc Dis Res 3:65–71. doi:10.3132/dvdr.2006.016

    Article  PubMed  Google Scholar 

  138. Pauly RP, Rosche F, Wermann M, McIntosh CH, Pederson RA, Demuth HU (1996) Investigation of glucose-dependent insulinotropic polypeptide-(1-42) and glucagon-like peptide-1-(7-36) degradation in vitro by dipeptidyl peptidase IV using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. A novel kinetic approach. J Biol Chem 271:23222–23229. doi:10.1074/jbc.271.38.23222

    Article  PubMed  CAS  Google Scholar 

  139. Post H, Schulz R, Behrends M, Gres P, Umschlag C, Heusch G (2000) No involvement of endogenous nitric oxide in classical ischemic preconditioning in swine. J Mol Cell Cardiol 32:725–733. doi:10.1006/jmcc.2000.1117

    Article  PubMed  CAS  Google Scholar 

  140. Przyklenk K, Maynard M, Greiner DL, Whittaker P (2011) Cardioprotection with postconditioning: loss of efficacy in murine models of type-2 and type-1 diabetes. Antioxid Redox Signal 14:781–790. doi:10.1089/ars.2010.3343

    Article  PubMed  CAS  Google Scholar 

  141. Qi JS, Kam KW, Chen M, Wu S, Wong TM (2004) Failure to confer cardioprotection and to increase the expression of heat-shock protein 70 by preconditioning with a kappa-opioid receptor agonist during ischaemia and reperfusion in streptozotocin-induced diabetic rats. Diabetologia 47:214–220. doi:10.1007/s00125-003-1288-0

    Article  PubMed  CAS  Google Scholar 

  142. Qian YZ, Levasseur JE, Yoshida K, Kukreja RC (1996) KATP channels in rat heart: blockade of ischemic and acetylcholine-mediated preconditioning by glibenclamide. Am J Physiol 271:H23–H28

    PubMed  CAS  Google Scholar 

  143. Riveline JP, Danchin N, Ledru F, Varroud-Vial M, Charpentier G (2003) Sulfonylureas and cardiovascular effects: from experimental data to clinical use. Available data in humans and clinical applications. Diabetes Metab 29:207–222. doi:10.1016/S1262-3636(07)70030-7

    Article  PubMed  CAS  Google Scholar 

  144. Rottlaender D, Boengler K, Wolny M, Michels G, Endres-Becker J, Motloch LJ, Schwaiger A, Buechert A, Schulz R, Heusch G, Hoppe UC (2010) Connexin 43 acts as a cytoprotective mediator of signal transduction by stimulating mitochondrial KATP channels in mouse cardiomyocytes. J Clin Invest 120:1441–1453. doi:10.1172/JCI40927

    Article  PubMed  CAS  Google Scholar 

  145. Sanada S, Asanuma H, Tsukamoto O, Minamino T, Node K, Takashima S, Fukushima T, Ogai A, Shinozaki Y, Fujita M, Hirata A, Okuda H, Shimokawa H, Tomoike H, Hori M, Kitakaze M (2004) Protein kinase A as another mediator of ischemic preconditioning independent of protein kinase C. Circulation 110:51–57. doi:10.1161/01.CIR.0000133390.12306.C7

    Article  PubMed  CAS  Google Scholar 

  146. Sanada S, Kitakaze M, Papst PJ, Asanuma H, Node K, Takashima S, Asakura M, Ogita H, Liao Y, Sakata Y, Ogai A, Fukushima T, Yamada J, Shinozaki Y, Kuzuya T, Mori H, Terada N, Hori M (2001) Cardioprotective effect afforded by transient exposure to phosphodiesterase III inhibitors: the role of protein kinase A and p38 mitogen-activated protein kinase. Circulation 104:705–710. doi:10.1161/hc3201.092216

    Article  PubMed  CAS  Google Scholar 

  147. Sato H, Bolli R, Rokosh GD, Bi Q, Dai S, Shirk G, Tang XL (2007) The cardioprotection of the late phase of ischemic preconditioning is enhanced by postconditioning via a COX-2-mediated mechanism in conscious rats. Am J Physiol Heart Circ Physiol 293:H2557–H2564. doi:10.1152/ajpheart.00858.2007

    Article  PubMed  CAS  Google Scholar 

  148. Schultz JE, Hsu AK, Gross GJ (1996) Morphine mimics the cardioprotective effect of ischemic preconditioning via a glibenclamide-sensitive mechanism in the rat heart. Circ Res 78:1100–1104

    PubMed  CAS  Google Scholar 

  149. Schulz R, Gres P, Heusch G (2003) Activation of ATP-dependent potassium channels is a trigger but not a mediator of ischaemic preconditioning in pigs. Br J Pharmacol 139:65–72. doi:10.1038/sj.bjp.0705225

    Article  PubMed  CAS  Google Scholar 

  150. Schulz R, Post H, Jalowy A, Backenkohler U, Dorge H, Vahlhaus C, Heusch G (1999) Unique cardioprotective action of the new calcium antagonist mibefradil. Circulation 99:305–311

    PubMed  CAS  Google Scholar 

  151. Schulz R, Rose J, Heusch G (1994) Involvement of activation of ATP-dependent potassium channels in ischemic preconditioning in swine. Am J Physiol 267:H1341–H1352

    PubMed  CAS  Google Scholar 

  152. Scognamiglio R, Negut C, De Kreutzenberg SV, Tiengo A, Avogaro A (2005) Postprandial myocardial perfusion in healthy subjects and in type 2 diabetic patients. Circulation 112:179–184. doi:10.1161/CIRCULATIONAHA.104.495127

    Article  PubMed  Google Scholar 

  153. Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87:4–14. doi:10.1016/j.diabres.2009.10.007

    Article  PubMed  CAS  Google Scholar 

  154. Skyler JS, Bergenstal R, Bonow RO, Buse J, Deedwania P, Gale EA, Howard BV, Kirkman MS, Kosiborod M, Reaven P, Sherwin RS (2009) Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA Diabetes Trials: a position statement of the American Diabetes Association and a Scientific Statement of the American College of Cardiology Foundation and the American Heart Association. J Am Coll Cardiol 53:298–304. doi:10.1016/j.jacc.2008.10.008

    Article  PubMed  Google Scholar 

  155. Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, Schulz R, Heusch G (2009) Ischemic postconditioning in pigs: no causal role for RISK activation. Circ Res 104:15–18. doi:10.1161/CIRCRESAHA.108.186429

    Article  PubMed  CAS  Google Scholar 

  156. Skyschally A, van Caster P, Iliodromitis EK, Schulz R, Kremastinos DT, Heusch G (2009) Ischemic postconditioning: experimental models and protocol algorithms. Basic Res Cardiol 104:469–483. doi:10.1007/s00395-009-0040-4

    Article  PubMed  Google Scholar 

  157. Solskov L, Lofgren B, Kristiansen SB, Jessen N, Pold R, Nielsen TT, Botker HE, Schmitz O, Lund S (2008) Metformin induces cardioprotection against ischaemia/reperfusion injury in the rat heart 24 hours after administration. Basic Clin Pharmacol Toxicol 103:82–87. doi:10.1111/j.1742-7843.2008.00234.x

    Article  PubMed  CAS  Google Scholar 

  158. Sonne DP, Engstrom T, Treiman M (2008) Protective effects of GLP-1 analogues exendin-4 and GLP-1(9-36) amide against ischemia–reperfusion injury in rat heart. Regul Pept 146:243–249. doi:10.1016/j.regpep.2007.10.001

    Article  PubMed  CAS  Google Scholar 

  159. Starkopf J, Andreasen TV, Bugge E, Ytrehus K (1998) Lipid peroxidation, arachidonic acid and products of the lipoxygenase pathway in ischaemic preconditioning of rat heart. Cardiovasc Res 37:66–75. doi:10.1016/S0008-6363(97)00240-X

    Article  PubMed  CAS  Google Scholar 

  160. Stranders I, Diamant M, van Gelder RE, Spruijt HJ, Twisk JW, Heine RJ, Visser FC (2004) Admission blood glucose level as risk indicator of death after myocardial infarction in patients with and without diabetes mellitus. Arch Intern Med 164:982–988. doi:10.1001/archinte.164.9.982

    Article  PubMed  Google Scholar 

  161. Sunaga Y, Inagaki N, Gonoi T, Yamada Y, Ishida H, Seino Y, Seino S (1999) Troglitazone but not pioglitazone affects ATP-sensitive K(+) channel activity. Eur J Pharmacol 381:71–76. doi:10.1016/S0014-2999(99)00539-7

    Article  PubMed  CAS  Google Scholar 

  162. Takano H, Hasegawa H, Zou Y, Komuro I (2004) Pleiotropic actions of PPAR gamma activators thiazolidinediones in cardiovascular diseases. Curr Pharm Des 10:2779–2786

    Article  PubMed  CAS  Google Scholar 

  163. Takeda K, Ichiki T, Tokunou T, Iino N, Takeshita A (2001) 15-Deoxy-delta 12, 14-prostaglandin J2 and thiazolidinediones activate the MEK/ERK pathway through phosphatidylinositol 3-kinase in vascular smooth muscle cells. J Biol Chem 276:48950–48955. doi:10.1074/jbc.M108722200

    Article  PubMed  CAS  Google Scholar 

  164. Tanaka K, Kehl F, Gu W, Krolikowski JG, Pagel PS, Warltier DC, Kersten JR (2002) Isoflurane-induced preconditioning is attenuated by diabetes. Am J Physiol Heart Circ Physiol 282:H2018–H2023. doi:10.1152/ajpheart.01130.2001

    PubMed  CAS  Google Scholar 

  165. Tao L, Wang Y, Gao E, Zhang H, Yuan Y, Lau WB, Chan L, Koch WJ, Ma XL (2010) Adiponectin: an indispensable molecule in rosiglitazone cardioprotection following myocardial infarction. Circ Res 106:409–417. doi:10.1161/CIRCRESAHA.109.211797

    Article  PubMed  CAS  Google Scholar 

  166. Tavackoli S, Ashitkov T, Hu ZY, Motamedi M, Uretsky BF, Birnbaum Y (2004) Simvastatin-induced myocardial protection against ischemia–reperfusion injury is mediated by activation of ATP-sensitive K+ channels. Coron Artery Dis 15:53–58. doi:10.1097/00019501-200402000-00008

    Article  PubMed  Google Scholar 

  167. Timmers L, Henriques JP, de Kleijn DP, Devries JH, Kemperman H, Steendijk P, Verlaan CW, Kerver M, Piek JJ, Doevendans PA, Pasterkamp G, Hoefer IE (2009) Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol 53:501–510. doi:10.1016/j.jacc.2008.10.033

    Article  PubMed  CAS  Google Scholar 

  168. Tomai F, Crea F, Gaspardone A, Versaci F, De Paulis R, Penta de Peppo A, Chiariello L, Gioffre PA (1994) Ischemic preconditioning during coronary angioplasty is prevented by glibenclamide, a selective ATP-sensitive K+ channel blocker. Circulation 90:700–705

    PubMed  CAS  Google Scholar 

  169. Tomai F, Danesi A, Ghini AS, Crea F, Perino M, Gaspardone A, Ruggeri G, Chiariello L, Gioffre PA (1999) Effects of K(ATP) channel blockade by glibenclamide on the warm-up phenomenon. Eur Heart J 20:196–202

    Article  PubMed  CAS  Google Scholar 

  170. Tsang A, Hausenloy DJ, Mocanu MM, Carr RD, Yellon DM (2005) Preconditioning the diabetic heart: the importance of Akt phosphorylation. Diabetes 54:2360–2364. doi:10.2337/diabetes.54.8.2360

    Article  PubMed  CAS  Google Scholar 

  171. Ussher JR, Lopaschuk GD (2009) Targeting malonyl CoA inhibition of mitochondrial fatty acid uptake as an approach to treat cardiac ischemia/reperfusion. Basic Res Cardiol 104:203–210. doi:10.1007/s00395-009-0003-9

    Article  PubMed  CAS  Google Scholar 

  172. Walsh RS, Tsuchida A, Daly JJ, Thornton JD, Cohen MV, Downey JM (1994) Ketamine-xylazine anaesthesia permits a KATP channel antagonist to attenuate preconditioning in rabbit myocardium. Cardiovasc Res 28:1337–1341. doi:10.1093/cvr/28.9.1337

    Article  PubMed  CAS  Google Scholar 

  173. Wang GY, Wu S, Pei JM, Yu XC, Wong TM (2001) Kappa- but not delta-opioid receptors mediate effects of ischemic preconditioning on both infarct and arrhythmia in rats. Am J Physiol Heart Circ Physiol 280:H384–H391

    PubMed  CAS  Google Scholar 

  174. Wang S, Cone J, Liu Y (2001) Dual roles of mitochondrial K(ATP) channels in diazoxide-mediated protection in isolated rabbit hearts. Am J Physiol Heart Circ Physiol 280:H246–H255

    PubMed  CAS  Google Scholar 

  175. Watala C, Pluta J, Golanski J, Rozalski M, Czyz M, Trojanowski Z, Drzewoski J (2005) Increased protein glycation in diabetes mellitus is associated with decreased aspirin-mediated protein acetylation and reduced sensitivity of blood platelets to aspirin. J Mol Med 83:148–158. doi:10.1007/s00109-004-0600-x

    Article  PubMed  CAS  Google Scholar 

  176. Wayman NS, Hattori Y, McDonald MC, Mota-Filipe H, Cuzzocrea S, Pisano B, Chatterjee PK, Thiemermann C (2002) Ligands of the peroxisome proliferator-activated receptors (PPAR-gamma and PPAR-alpha) reduce myocardial infarct size. Faseb J 16:1027–1040. doi:10.1096/fj.01-0793com

    Article  PubMed  CAS  Google Scholar 

  177. Wynne AM, Mocanu MM, Yellon DM (2005) Pioglitazone mimics preconditioning in the isolated perfused rat heart: a role for the prosurvival kinases PI3K and P42/44MAPK. J Cardiovasc Pharmacol 46:817–822. doi:10.1097/01.fjc.0000188365.07635.57

    Article  PubMed  CAS  Google Scholar 

  178. Xu Y, Gen M, Lu L, Fox J, Weiss SO, Brown RD, Perlov D, Ahmad H, Zhu P, Greyson C, Long CS, Schwartz GG (2005) PPAR-gamma activation fails to provide myocardial protection in ischemia and reperfusion in pigs. Am J Physiol Heart Circ Physiol 288:H1314–H1323. doi:10.1152/ajpheart.00618.2004

    Article  PubMed  CAS  Google Scholar 

  179. Yang XM, Proctor JB, Cui L, Krieg T, Downey JM, Cohen MV (2004) Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol 44:1103–1110. doi:10.1016/j.jacc.2004.05.060

    Article  PubMed  Google Scholar 

  180. Yasuda S, Kobayashi H, Iwasa M, Kawamura I, Sumi S, Narentuoya B, Yamaki T, Ushikoshi H, Nishigaki K, Nagashima K, Takemura G, Fujiwara T, Fujiwara H, Minatoguchi S (2009) Antidiabetic drug pioglitazone protects the heart via activation of PPAR-gamma receptors, PI3-kinase, Akt, and eNOS pathway in a rabbit model of myocardial infarction. Am J Physiol Heart Circ Physiol 296:H1558–H1565. doi:10.1152/ajpheart.00712.2008

    Article  PubMed  CAS  Google Scholar 

  181. Ye Y, Hu Z, Lin Y, Zhang C, Perez-Polo JR (2010) Downregulation of microRNA-29 by antisense inhibitors and a PPAR-gamma agonist protects against myocardial ischaemia–reperfusion injury. Cardiovasc Res 87:535–544. doi:10.1093/cvr/cvq053

    Article  PubMed  CAS  Google Scholar 

  182. Ye Y, Keyes KT, Zhang C, Perez-Polo JR, Lin Y, Birnbaum Y (2010) The myocardial infarct size-limiting effect of sitagliptin is PKA-dependent, whereas the protective effect of pioglitazone is partially dependent on PKA. Am J Physiol Heart Circ Physiol 298:H1454–H1465. doi:10.1152/ajpheart.00867.2009

    Article  PubMed  CAS  Google Scholar 

  183. Ye Y, Keyes KT, Zhang CF, Perez-Polo JR, Lin Y, Birnbaum Y (2010) Additive effect of TAK-491, a new angiotensin receptor blocker, and pioglitazone, in reducing myocardial infarct size. Cardiovasc Drugs Ther 24:107–120. doi:10.1007/s10557-010-6227-y

    Article  PubMed  CAS  Google Scholar 

  184. Ye Y, Lin Y, Atar S, Huang MH, Perez-Polo JR, Uretsky BF, Birnbaum Y (2006) Myocardial protection by pioglitazone, atorvastatin, and their combination: mechanisms and possible interactions. Am J Physiol Heart Circ Physiol 291:H1158–H1169. doi:10.1152/ajpheart.00096.2006

    Article  PubMed  CAS  Google Scholar 

  185. Ye Y, Lin Y, Manickavasagam S, Perez-Polo JR, Tieu BC, Birnbaum Y (2008) Pioglitazone protects the myocardium against ischemia–reperfusion injury in eNOS and iNOS knockout mice. Am J Physiol Heart Circ Physiol 295:H2436–H2446. doi:10.1152/ajpheart.00690.2008

    Article  PubMed  CAS  Google Scholar 

  186. Ye Y, Lin Y, Perez-Polo JR, Birnbaum Y (2008) Oral glyburide, but not glimepiride, blocks the infarct-size limiting effects of pioglitazone. Cardiovasc Drugs Ther 22:429–436. doi:10.1007/s10557-008-6138-3

    Article  PubMed  CAS  Google Scholar 

  187. Ye Y, Lin Y, Perez-Polo JR, Uretsky BF, Ye Z, Tieu BC, Birnbaum Y (2008) Phosphorylation of 5-lipoxygenase at ser523 by protein kinase A determines whether pioglitazone and atorvastatin induce proinflammatory leukotriene B4 or anti-inflammatory 15-epi-lipoxin a4 production. J Immunol 181:3515–3523

    PubMed  CAS  Google Scholar 

  188. Ye Y, Martinez JD, Perez-Polo RJ, Lin Y, Uretsky BF, Birnbaum Y (2008) The role of eNOS, iNOS, and NF-kappaB in upregulation and activation of cyclooxygenase-2 and infarct size reduction by atorvastatin. Am J Physiol Heart Circ Physiol 295:H343–H351. doi:10.1152/ajpheart.01350.2007

    Article  PubMed  CAS  Google Scholar 

  189. Ye Y, Nishi SP, Manickavasagam S, Lin Y, Huang MH, Perez-Polo JR, Uretsky BF, Birnbaum Y (2007) Activation of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) by atorvastatin is mediated by 15-deoxy-delta-12, 14-PGJ2. Prostaglandins Other Lipid Mediat 84:43–53. doi:10.1016/j.prostaglandins.2007.04.001

    Article  PubMed  CAS  Google Scholar 

  190. Yue TL, Bao W, Gu JL, Cui J, Tao L, Ma XL, Ohlstein EH, Jucker BM (2005) Rosiglitazone treatment in Zucker diabetic Fatty rats is associated with ameliorated cardiac insulin resistance and protection from ischemia/reperfusion-induced myocardial injury. Diabetes 54:554–562. doi:10.2337/diabetes.54.2.554

    Article  PubMed  CAS  Google Scholar 

  191. Yue Tl TL, Chen J, Bao W, Narayanan PK, Bril A, Jiang W, Lysko PG, Gu JL, Boyce R, Zimmerman DM, Hart TK, Buckingham RE, Ohlstein EH (2001) In vivo myocardial protection from ischemia/reperfusion injury by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. Circulation 104:2588–2594. doi:10.1161/hc4601.099403

    Article  PubMed  CAS  Google Scholar 

  192. Zeller M, Danchin N, Simon D, Vahanian A, Lorgis L, Cottin Y, Berland J, Gueret P, Wyart P, Deturck R, Tabone X, Machecourt J, Leclercq F, Drouet E, Mulak G, Bataille V, Cambou JP, Ferrieres J, Simon T (2010) Impact of type of preadmission sulfonylureas on mortality and cardiovascular outcomes in diabetic patients with acute myocardial infarction. J Clin Endocrinol Metab 95:4993–5002. doi:10.1210/jc.2010-0449

    Article  PubMed  CAS  Google Scholar 

  193. Zhang C, Park Y, Picchi A, Potter BJ (2008) Maturation-induces endothelial dysfunction via vascular inflammation in diabetic mice. Basic Res Cardiol 103:407–416. doi:10.1007/s00395-008-0725-0

    Article  PubMed  CAS  Google Scholar 

  194. Zhang XJ, Xiong ZB, Tang AL, Ma H, Ma YD, Wu JG, Dong YG (2010) Rosiglitazone-induced myocardial protection against ischaemia–reperfusion injury is mediated via a phosphatidylinositol 3-kinase/Akt-dependent pathway. Clin Exp Pharmacol Physiol 37:156–161. doi:10.1111/j.1440-1681.2009.05232.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Some of the work performed by Y.Y., J.R.P.P., and Y.B was funded by research grants from Pfizer, Takeda, Merck, and Novartis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yochai Birnbaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, Y., Perez-Polo, J.R., Aguilar, D. et al. The potential effects of anti-diabetic medications on myocardial ischemia–reperfusion injury. Basic Res Cardiol 106, 925–952 (2011). https://doi.org/10.1007/s00395-011-0216-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-011-0216-6

Keywords

Navigation