Skip to main content
Log in

Diabetes mellitus abrogates erythropoietin-induced cardioprotection against ischemic-reperfusion injury by alteration of the RISK/GSK-3β signaling

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Recent studies reported cardioprotective effects of erythropoietin (EPO) against ischemia–reperfusion (I/R) injury through activation of the reperfusion injury salvage kinase (RISK) pathway. As RISK has been reported to be impaired in diabetes and insulin resistance syndrome, we examined whether EPO-induced cardioprotection was maintained in rat models of type 1 diabetes and insulin resistance syndrome. Isolated hearts were obtained from three rat cohorts: healthy controls, streptozotocin (STZ)-induced diabetes, and high-fat diet (HFD)-induced insulin resistance syndrome. All hearts underwent 25 min ischemia and 30 min or 120 min reperfusion. They were assigned to receive either no intervention or a single dose of EPO at the onset of reperfusion. In hearts from healthy controls, EPO decreased infarct size (14.36 ± 0.60 and 36.22 ± 4.20% of left ventricle in EPO-treated and untreated hearts, respectively, p < 0.05) and increased phosphorylated forms of Akt, ERK1/2, and their downstream target GSK-3β. In hearts from STZ-induced diabetic rats, EPO did not decrease infarct size (32.05 ± 2.38 and 31.88 ± 1.87% in EPO-treated and untreated diabetic rat hearts, respectively, NS) nor did it increase phosphorylation of Akt, ERK1/2, and GSK-3β. In contrast, in hearts from HFD-induced insulin resistance rats, EPO decreased infarct size (18.66 ± 1.99 and 34.62 ± 3.41% in EPO-treated and untreated HFD rat hearts, respectively, p < 0.05) and increased phosphorylation of Akt, ERK1/2, and GSK-3β. Administration of GSK-3β inhibitor SB216763 was cardioprotective in healthy and diabetic hearts. STZ-induced diabetes abolished EPO-induced cardioprotection against I/R injury through a disruption of upstream signaling of GSK-3β. In conclusion, direct inhibition of GSK-3β may provide an alternative strategy to protect diabetic hearts against I/R injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Amour J, Brzezinska AK, Jager Z, Sullivan C, Weihrauch D, Du J, Vladic N, Shi Y, Warltier DC, Pratt PF Jr, Kersten JR (2010) Hyperglycemia adversely modulates endothelial nitric oxide synthase during anesthetic preconditioning through tetrahydrobiopterin- and heat shock protein 90-mediated mechanisms. Anesthesiology 112:576–585

    Article  CAS  PubMed  Google Scholar 

  2. Bhamra GS, Hausenloy DJ, Davidson SM, Carr RD, Paiva M, Wynne AM, Mocanu MM, Yellon DM (2008) Metformin protects the ischemic heart by the Akt-mediated inhibition of mitochondrial permeability transition pore opening. Basic Res Cardiol 103:274–284

    Article  CAS  PubMed  Google Scholar 

  3. Bullard AJ, Govewalla P, Yellon DM (2005) Erythropoietin protects the myocardium against reperfusion injury in vitro and in vivo. Basic Res Cardiol 100:397–403

    Article  CAS  PubMed  Google Scholar 

  4. Calvillo L, Latini R, Kajstura J, Leri A, Anversa P, Ghezzi P, Salio M, Cerami A, Brines M (2003) Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling. Proc Natl Acad Sci USA 100:4802–4806

    Article  CAS  PubMed  Google Scholar 

  5. Ceylan-Isik A, Hunkar T, Asan E, Kaymaz F, Ari N, Soylemezoglu T, Renda N, Soncul H, Bali M, Karasu C (2007) Cod liver oil supplementation improves cardiovascular and metabolic abnormalities in streptozotocin diabetic rats. J Pharm Pharmacol 59:1629–1641

    Article  CAS  PubMed  Google Scholar 

  6. Dikow R, Wasserhess C, Zimmerer K, Kihm LP, Schaier M, Schwenger V, Hardt S, Tiefenbacher C, Katus H, Zeier M, Gross LM (2009) Effect of insulin and glucose infusion on myocardial infarction size in uraemic rats. Basic Res Cardiol 104:571–579

    Article  CAS  PubMed  Google Scholar 

  7. Dincer UD, Bidasee KR, Guner S, Tay A, Ozcelikay AT, Altan VM (2001) The effect of diabetes on expression of beta1-, beta2-, and beta3-adrenoreceptors in rat hearts. Diabetes 50:455–461

    Article  CAS  PubMed  Google Scholar 

  8. Ferdinandy P, Schulz R, Baxter GF (2007) Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev 59:418–458

    Article  CAS  PubMed  Google Scholar 

  9. Flamment M, Gueguen N, Wetterwald C, Simard G, Malthiery Y, Ducluzeau PH (2009) Effects of the cannabinoid CB1 antagonist, rimonabant, on hepatic mitochondrial function in rats fed a high fat diet. Am J Physiol Endocrinol Metab 297:E1162–E1170

    Article  CAS  Google Scholar 

  10. Gross ER, Hsu AK, Gross GJ (2007) Diabetes abolishes morphine-induced cardioprotection via multiple pathways upstream of glycogen synthase kinase-3beta. Diabetes 56:127–136

    Article  CAS  PubMed  Google Scholar 

  11. Guillard C, Chretien S, Pelus AS, Porteu F, Muller O, Mayeux P, Duprez V (2003) Activation of the mitogen-activated protein kinases Erk1/2 by erythropoietin receptor via a G(i)protein beta gamma-subunit-initiated pathway. J Biol Chem 278:11050–11056

    Article  CAS  PubMed  Google Scholar 

  12. Hanlon PR, Fu P, Wright GL, Steenbergen C, Arcasoy MO, Murphy E (2005) Mechanisms of erythropoietin-mediated cardioprotection during ischemia-reperfusion injury: role of protein kinase C and phosphatidylinositol 3-kinase signaling. FASEB J 19:1323–1325

    CAS  PubMed  Google Scholar 

  13. Hausenloy DJ, Tsang A, Yellon DM (2005) The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med 15:69–75

    Article  CAS  PubMed  Google Scholar 

  14. Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res 61:448–460

    Article  CAS  PubMed  Google Scholar 

  15. Heusch G (2009) No RISK, no…cardioprotection? A critical perspective. Cardiovasc Res 84:173–175

    Article  CAS  PubMed  Google Scholar 

  16. Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118:1915–1919

    Article  PubMed  Google Scholar 

  17. Joyeux-Faure M, Rossini E, Ribuot C, Faure P (2006) Fructose-fed rat hearts are protected against ischemia-reperfusion injury. Exp Biol Med (Maywood) 231:456–462

    CAS  Google Scholar 

  18. Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman BD, Wang S, Ytrehus K, Antos CL, Olson EN, Sollott SJ (2004) Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 113:1535–1549

    CAS  PubMed  Google Scholar 

  19. Kaygisiz Z, Erkasap N, Yazihan N, Sayar K, Ataoglu H, Uyar R, Ikizler M (2006) Erythropoietin changes contractility, cAMP, and nitrite levels of isolated rat hearts. J Physiol Sci 56:247–251

    Article  CAS  PubMed  Google Scholar 

  20. Kehl F, Krolikowski JG, Mraovic B, Pagel PS, Warltier DC, Kersten JR (2002) Hyperglycemia prevents isoflurane-induced preconditioning against myocardial infarction. Anesthesiology 96:183–188

    Article  CAS  PubMed  Google Scholar 

  21. Kersten JR, Montgomery MW, Ghassemi T, Gross ER, Toller WG, Pagel PS, Warltier DC (2001) Diabetes and hyperglycemia impair activation of mitochondrial K(ATP) channels. Am J Physiol Heart Circ Physiol 280:H1744–H1750

    CAS  PubMed  Google Scholar 

  22. Kersten JR, Toller WG, Gross ER, Pagel PS, Warltier DC (2000) Diabetes abolishes ischemic preconditioning: role of glucose, insulin, and osmolality. Am J Physiol Heart Circ Physiol 278:H1218–H1224

    CAS  PubMed  Google Scholar 

  23. Kim HS, Cho JE, Hwang KC, Shim YH, Lee JH, Kwak YL (2010) Diabetes mellitus mitigates cardioprotective effects of remifentanil preconditioning in ischemia-reperfused rat heart in association with anti-apoptotic pathways of survival. Eur J Pharmacol 628:132–139

    Article  CAS  PubMed  Google Scholar 

  24. Kristiansen SB, Lofgren B, Stottrup NB, Khatir D, Nielsen-Kudsk JE, Nielsen TT, Botker HE, Flyvbjerg A (2004) Ischaemic preconditioning does not protect the heart in obese and lean animal models of type 2 diabetes. Diabetologia 47:1716–1721

    Article  CAS  PubMed  Google Scholar 

  25. Latifpour J, McNeill JH (1984) Cardiac autonomic receptors: effect of long-term experimental diabetes. J Pharmacol Exp Ther 230:242–249

    CAS  PubMed  Google Scholar 

  26. Laviola L, Belsanti G, Davalli AM, Napoli R, Perrini S, Weir GC, Giorgino R, Giorgino F (2001) Effects of streptozocin diabetes and diabetes treatment by islet transplantation on in vivo insulin signaling in rat heart. Diabetes 50:2709–2720

    Article  CAS  PubMed  Google Scholar 

  27. Lim SY, Davidson SM, Yellon DM, Smith CC (2009) The cannabinoid CB1 receptor antagonist, rimonabant, protects against acute myocardial infarction. Basic Res Cardiol 104:781–792

    Article  CAS  PubMed  Google Scholar 

  28. Lipsic E, van der Meer P, Henning RH, Suurmeijer AJ, Boddeus KM, van Veldhuisen DJ, van Gilst WH, Schoemaker RG (2004) Timing of erythropoietin treatment for cardioprotection in ischemia/reperfusion. J Cardiovasc Pharmacol 44:473–479

    Article  CAS  PubMed  Google Scholar 

  29. Liu Y, Thornton JD, Cohen MV, Downey JM, Schaffer SW (1993) Streptozotocin-induced non-insulin-dependent diabetes protects the heart from infarction. Circulation 88:1273–1278

    CAS  PubMed  Google Scholar 

  30. Maddaford TG, Russell JC, Pierce GN (1997) Postischemic cardiac performance in the insulin-resistant JCR:LA-cp rat. Am J Physiol 273:H1187–H1192

    CAS  PubMed  Google Scholar 

  31. Miki T, Miura T, Hotta H, Tanno M, Yano T, Sato T, Terashima Y, Takada A, Ishikawa S, Shimamoto K (2009) ER stress in diabetic hearts abolishes erythropoietin-induced myocardial protection by impairment of phospho-GSK-3{beta}-mediated suppression of mitochondrial permeability transition. Diabetes 58:2863–2872

    Article  CAS  PubMed  Google Scholar 

  32. Murray CJ, Lopez AD (1997) Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet 349:1498–1504

    Article  CAS  PubMed  Google Scholar 

  33. Nishihara M, Miura T, Miki T, Tanno M, Yano T, Naitoh K, Ohori K, Hotta H, Terashima Y, Shimamoto K (2007) Modulation of the mitochondrial permeability transition pore complex in GSK-3beta-mediated myocardial protection. J Mol Cell Cardiol 43:564–570

    Article  CAS  PubMed  Google Scholar 

  34. Park SS, Zhao H, Mueller RA, Xu Z (2006) Bradykinin prevents reperfusion injury by targeting mitochondrial permeability transition pore through glycogen synthase kinase 3beta. J Mol Cell Cardiol 40:708–716

    Article  CAS  PubMed  Google Scholar 

  35. Paulson DJ (1997) The diabetic heart is more sensitive to ischemic injury. Cardiovasc Res 34:104–112

    Article  CAS  PubMed  Google Scholar 

  36. Prunier F, Pfister O, Hadri L, Liang L, Del Monte F, Liao R, Hajjar RJ (2007) Delayed erythropoietin therapy reduces post-MI cardiac remodeling only at a dose that mobilizes endothelial progenitor cells. Am J Physiol Heart Circ Physiol 292:H522–H529

    Article  CAS  PubMed  Google Scholar 

  37. Przyklenk K, Maynard M, Greiner DL, Whittaker P (2010) Cardioprotection with postconditioning: loss of efficacy in murine models of type-2 and type-1 diabetes. Antioxid Redox Signal. doi:10.1089/ars.2010.3343

  38. Rafiee P, Shi Y, Su J, Pritchard KA Jr, Tweddell JS, Baker JE (2005) Erythropoietin protects the infant heart against ischemia-reperfusion injury by triggering multiple signaling pathways. Basic Res Cardiol 100:187–197

    Article  CAS  PubMed  Google Scholar 

  39. Raphael J, Gozal Y, Navot N, Zuo Z (2010) Hyperglycemia inhibits anesthetic-induced postconditioning in the rabbit heart via modulation of phosphatidylinositol-3-kinase/Akt and endothelial nitric oxide synthase signaling. J Cardiovasc Pharmacol 55:348–357

    Article  CAS  PubMed  Google Scholar 

  40. Ravingerova T, Stetka R, Volkovova K, Pancza D, Dzurba A, Ziegelhoffer A, Styk J (2000) Acute diabetes modulates response to ischemia in isolated rat heart. Mol Cell Biochem 210:143–151

    Article  CAS  PubMed  Google Scholar 

  41. Riksen NP, Hausenloy DJ, Yellon DM (2008) Erythropoietin: ready for prime-time cardioprotection. Trends Pharmacol Sci 29:258–267

    Article  CAS  PubMed  Google Scholar 

  42. Shanmuganathan S, Hausenloy DJ, Duchen MR, Yellon DM (2005) Mitochondrial permeability transition pore as a target for cardioprotection in the human heart. Am J Physiol Heart Circ Physiol 289:H237–H242

    Article  CAS  PubMed  Google Scholar 

  43. Sharma A, Singh M (2000) Possible mechanism of cardioprotective effect of ischaemic preconditioning in isolated rat heart. Pharmacol Res 41:635–640

    Article  CAS  PubMed  Google Scholar 

  44. Sidell RJ, Cole MA, Draper NJ, Desrois M, Buckingham RE, Clarke K (2002) Thiazolidinedione treatment normalizes insulin resistance and ischemic injury in the zucker Fatty rat heart. Diabetes 51:1110–1117

    Article  CAS  PubMed  Google Scholar 

  45. Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, Schulz R, Heusch G (2009) Ischemic postconditioning in pigs: no causal role for RISK activation. Circ Res 104:15–18

    Article  CAS  PubMed  Google Scholar 

  46. Tamareille S, Ghaboura N, Treguer F, Khachman D, Croue A, Henrion D, Furber A, Prunier F (2009) Myocardial reperfusion injury management: erythropoietin compared with postconditioning. Am J Physiol Heart Circ Physiol 297:H2035–H2043

    Article  CAS  PubMed  Google Scholar 

  47. Tanaka K, Kehl F, Gu W, Krolikowski JG, Pagel PS, Warltier DC, Kersten JR (2002) Isoflurane-induced preconditioning is attenuated by diabetes. Am J Physiol Heart Circ Physiol 282:H2018–H2023

    CAS  PubMed  Google Scholar 

  48. Thim T, Bentzon JF, Kristiansen SB, Simonsen U, Andersen HL, Wassermann K, Falk E (2006) Size of myocardial infarction induced by ischaemia/reperfusion is unaltered in rats with metabolic syndrome. Clin Sci (Lond) 110:665–671

    Article  Google Scholar 

  49. Tong H, Imahashi K, Steenbergen C, Murphy E (2002) Phosphorylation of glycogen synthase kinase-3beta during preconditioning through a phosphatidylinositol-3-kinase-dependent pathway is cardioprotective. Circ Res 90:377–379

    Article  CAS  PubMed  Google Scholar 

  50. Tosaki A, Engelman DT, Engelman RM, Das DK (1996) The evolution of diabetic response to ischemia/reperfusion and preconditioning in isolated working rat hearts. Cardiovasc Res 31:526–536

    CAS  PubMed  Google Scholar 

  51. Tramontano AF, Muniyappa R, Black AD, Blendea MC, Cohen I, Deng L, Sowers JR, Cutaia MV, El-Sherif N (2003) Erythropoietin protects cardiac myocytes from hypoxia-induced apoptosis through an Akt-dependent pathway. Biochem Biophys Res Commun 308:990–994

    Article  CAS  PubMed  Google Scholar 

  52. Tsang A, Hausenloy DJ, Mocanu MM, Carr RD, Yellon DM (2005) Preconditioning the diabetic heart: the importance of Akt phosphorylation. Diabetes 54:2360–2364

    Article  CAS  PubMed  Google Scholar 

  53. Wagner C, Kloeting I, Strasser RH, Weinbrenner C (2008) Cardioprotection by postconditioning is lost in WOKW rats with metabolic syndrome: role of glycogen synthase kinase 3beta. J Cardiovasc Pharmacol 52:430–437

    Article  CAS  PubMed  Google Scholar 

  54. Wright GL, Hanlon P, Amin K, Steenbergen C, Murphy E, Arcasoy MO (2004) Erythropoietin receptor expression in adult rat cardiomyocytes is associated with an acute cardioprotective effect for recombinant erythropoietin during ischemia-reperfusion injury. FASEB J 18:1031–1033

    CAS  PubMed  Google Scholar 

  55. Wright JJ, Kim J, Buchanan J, Boudina S, Sena S, Bakirtzi K, Ilkun O, Theobald HA, Cooksey RC, Kandror KV, Abel ED (2009) Mechanisms for increased myocardial fatty acid utilization following short-term high-fat feeding. Cardiovasc Res 82:351–360

    Article  CAS  PubMed  Google Scholar 

  56. Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Pierre Legras and Jerome Roux from the animal facilities for taking care of the animals, and Robert Filmon (Service Commun d’Imageries et d’Analyses Microscopiques) for his technical assistance. S. Tamareille and N. Ghaboura were supported by a fellowship from the Conseil Général du Maine et Loire.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Prunier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghaboura, N., Tamareille, S., Ducluzeau, PH. et al. Diabetes mellitus abrogates erythropoietin-induced cardioprotection against ischemic-reperfusion injury by alteration of the RISK/GSK-3β signaling. Basic Res Cardiol 106, 147–162 (2011). https://doi.org/10.1007/s00395-010-0130-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-010-0130-3

Keywords

Navigation