Skip to main content

Advertisement

Log in

The effect of obesity, macronutrients, fasting and nutritional status on drug-metabolizing cytochrome P450s: a systematic review of current evidence on human studies

  • Review
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Background

Cytochrome P450s (CYPs) are a class of hemoproteins involved in drug metabolism. It has been reported that body composition, proportion of dietary macronutrients, fasting and nutritional status can interfere with the activity of drug-metabolizing CYPs.

Objectives

The present systematic review was conducted to summarize the effect of obesity, weight reduction, macronutrients, fasting and malnutrition on the CYP-mediated drug metabolism.

Methods

PubMed (Medline), Scopus, Embase and Cochrane Library databases and Google Scholar were searched up to June 2020 to obtain relevant studies. The PRISMA guidelines were employed during all steps. Two reviewers independently extracted the information from the included studies. Studies investigating CYPs activity directly or indirectly through pharmacokinetics of probe drugs, were included. Increase in clearance (CL) or decrease in elimination half-life (t½) and area under the curve (AUC) of probe drugs were considered as increase in CYPs activity.

Results

A total of 6545 articles were obtained through searching databases among which 69 studies with 126 datasets fully met the inclusion criteria. The results indicated that obesity might decrease the activity of CYP3A4/5, CYP1A2 and CYP2C9 and increase the activity of CYP2E1. The effect of obesity on CYP2D6 is controversial. Also, weight loss increased CYP3A4 activity. Moreover, CYP1A2 activity was decreased by high carbohydrate diet, increased by high protein diet and fasting and unchanged by malnutrition. The activity of CYP2C19 was less susceptible to alterations compared to other CYPs.

Conclusion

The activity of drug-metabolizing CYPs are altered by body composition, dietary intake and nutritional status. This relationship might contribute to drug toxicity or reduce treatment efficacy and influence cost-effectiveness of medical care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Danielson P (2002) The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab 3(6):561–597

    Article  CAS  PubMed  Google Scholar 

  2. Isin EM, Guengerich FP (2007) Complex reactions catalyzed by cytochrome P450 enzymes. Biochimica et Biophysica Acta Gen Subj 1770(3):314–329

    Article  CAS  Google Scholar 

  3. Nebert DW, Russell DW (2002) Clinical importance of the cytochromes P450. Lancet 360(9340):1155–1162

    Article  CAS  PubMed  Google Scholar 

  4. Slaughter RL, Edwards DJ (1995) Recent advances: the cytochrome P450 enzymes. Ann Pharmacother 29(6):619–624

    Article  CAS  PubMed  Google Scholar 

  5. Nelson DR et al (2004) Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenet Genom 14(1):1–18

    Article  CAS  Google Scholar 

  6. Guengerich FP, Wu Z-L, Bartleson CJ (2005) Function of human cytochrome P450s: characterization of the orphans. Biochem Biophys Res Commun 338(1):465–469

    Article  CAS  PubMed  Google Scholar 

  7. Guengerich FP (2007) Cytochrome p450 and chemical toxicology. Chem Res Toxicol 21(1):70–83

    Article  PubMed  CAS  Google Scholar 

  8. Wilkinson GR (2005) Drug metabolism and variability among patients in drug response. N Engl J Med 352(21):2211–2221

    Article  CAS  PubMed  Google Scholar 

  9. Cheymol G (2000a) Effects of obesity on pharmacokinetics implications for drug therapy. Clin Pharmacokinet 39(3):215–231

    Article  CAS  PubMed  Google Scholar 

  10. Anderson KE, Kappas A (1991) Dietary regulation of cytochrome P450. Annu Rev Nutr 11(1):141–167

    Article  CAS  PubMed  Google Scholar 

  11. Walter-Sack I, Klotz U (1996) Influence of diet and nutritional status on drug metabolism. Clin Pharmacokinet 31(1):47–64

    Article  CAS  PubMed  Google Scholar 

  12. Cheymol G (1993) Clinical pharmacokinetics of drugs in obesity. Clin Pharmacokinet 25(2):103–114

    Article  CAS  PubMed  Google Scholar 

  13. Alvares A et al (1979) Regulation of drug metabolism in man by environmental factors. Drug Metab Rev 9(2):185–205

    Article  CAS  PubMed  Google Scholar 

  14. Yang CS, Brady JF, Hong J-Y (1992) Dietary effects on cytochromes P450, xenobiotic metabolism, and toxicity. FASEB J 6(2):737–744

    Article  CAS  PubMed  Google Scholar 

  15. Flegal KM et al (2010) Prevalence and trends in obesity among US adults, 1999–2008. JAMA 303(3):235–241

    Article  CAS  PubMed  Google Scholar 

  16. Ogden CL et al (2006) Prevalence of overweight and obesity in the United States, 1999–2004. JAMA 295(13):1549–1555

    Article  CAS  PubMed  Google Scholar 

  17. Berghöfer A et al (2008) Obesity prevalence from a European perspective: a systematic review. BMC Public Health 8(1):200

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cheymol G (2000b) Effects of obesity on pharmacokinetics. Clin Pharmacokinet 39(3):215–231

    Article  CAS  PubMed  Google Scholar 

  19. Dunn TE et al (1991) Pharmacokinetics and pharmacodynamics of methylprednisolone in obesity. Clin Pharmacol Ther 49(5):536–549

    Article  CAS  PubMed  Google Scholar 

  20. Caraco Y et al (1995a) Carbamazepine phakmacokinetics in obese and lean subjects. Ann Pharmacother 29(9):843–847

    Article  CAS  PubMed  Google Scholar 

  21. Abernethy DR et al (1984) The influence of obesity on the pharmacokinetics of oral alprazolam and triazolam. Clin Pharmacokinet 9(2):177–183

    Article  CAS  PubMed  Google Scholar 

  22. Abernethy DR, Greenblatt DJ (1985a) Ibuprofen disposition in obese individuals. Arthritis Rheum 28(10):1117–1121

    Article  CAS  PubMed  Google Scholar 

  23. Abernethy DR, Greenblatt DJ (1981) Effects of desmethyldiazepam on diazepam kinetics: a study of effects of a metabolite on parent drug disposition. Clin Pharmacol Ther 29(6):757–761

    Article  CAS  PubMed  Google Scholar 

  24. O’Shea D et al (1994) Effect of fasting and obesity in humans on the 6-hydroxylation of chlorzoxazone: a putative probe of CYP2E1 activity. Clin Pharmacol Ther 56(4):359–367

    Article  CAS  PubMed  Google Scholar 

  25. Cheymol G et al (1997) Pharmacokinetic study and cardiovascular monitoring of nebivolol in normal and obese subjects. Eur J Clin Pharmacol 51(6):493–498

    Article  CAS  PubMed  Google Scholar 

  26. Wree A et al (2011) Obesity affects the liver–the link between adipocytes and hepatocytes. Digestion 83(1–2):124–133

    Article  PubMed  Google Scholar 

  27. Fisher CD et al (2009) Hepatic cytochrome P450 enzyme alterations in humans with progressive stages of nonalcoholic fatty liver disease. Drug Metab Dispos 37(10):2087–2094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Donato MT et al (2006) Potential impact of steatosis on cytochrome P450 enzymes of human hepatocytes isolated from fatty liver grafts. Drug Metab Dispos 34(9):1556–1562

    Article  CAS  PubMed  Google Scholar 

  29. Donato M et al (2007) Effects of steatosis on drug-metabolizing capability of primary human hepatocytes. Toxicol In Vitro 21(2):271–276

    Article  CAS  PubMed  Google Scholar 

  30. Krishnaswamy K, Kalamegham R, Naidu NA (1984) Dietary influences on the kinetics of antipyrine and aminopyrine in human subjects. Br J Clin Pharmacol 17(2):139–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Leclercq I et al (1999) Dietary restriction of energy and sugar results in a reduction in human cytochrome P450 2E1 activity. Br J Nutr 82(4):257–262

    Article  CAS  PubMed  Google Scholar 

  32. Fagan TC et al (1987) Increased clearance of propranolol and theophylline by high-protein compared with high-carbohydrate diet. Clin Pharmacol Ther 41(4):402–406

    Article  CAS  PubMed  Google Scholar 

  33. Alvares AP et al (1976) Interactions between nutritional factors and drug biotransformations in man. Proc Natl Acad Sci 73(7):2501–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tan KK et al (1995) Effect of dietary fat on the pharmacokinetics and pharmacodynamics of cyclosporine in kidney transplant recipients. Clin Pharmacol Ther 57(4):425–433

    Article  CAS  PubMed  Google Scholar 

  35. Achterbergh R et al (2016) A short-term high fat diet increases exposure to midazolam and omeprazole in healthy subjects. Expert Opin Drug Metab Toxicol 12(7):715–720

    Article  CAS  PubMed  Google Scholar 

  36. Hamberg O et al (1990) The effect of dietary energy and protein deficiency on drug metabolism. Eur J Clin Pharmacol 38(6):567–570

    Article  CAS  PubMed  Google Scholar 

  37. Lares-Asseff I et al (1992) Pharmacokinetics of metronidazole in severely malnourished and nutritionally rehabilitated children. Clin Pharmacol Ther 51(1):42–50

    Article  CAS  PubMed  Google Scholar 

  38. Hamon-Vilcot B et al (2004) Effects of malnutrition on cytochrome P450 1A2 activity in elderly patients. Therapie 59(2):247–251

    Article  PubMed  Google Scholar 

  39. Lammers LA et al (2015) Short-term fasting alters cytochrome P450-mediated drug metabolism in humans. Drug Metab Dispos 43(6):819–828

    Article  CAS  PubMed  Google Scholar 

  40. Lammers LA et al (2018a) Short-term fasting alters pharmacokinetics of cytochrome P450 probe drugs: does protein binding play a role? Eur J Drug Metab Pharmacokinet 43(2):251–257

    Article  CAS  PubMed  Google Scholar 

  41. Higgins JP et al (2019) Cochrane handbook for systematic reviews of interventions. John Wiley & Sons

  42. Moher D et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097

    Article  PubMed  PubMed Central  Google Scholar 

  43. Abernethy DR et al (1982) Obesity, sex, and acetaminophen disposition. Clin Pharmacol Ther 31(6):783–790

    Article  CAS  PubMed  Google Scholar 

  44. Abernethy D, Todd EL, Schwartz JB (1985) Caffeine disposition in obesity. Br J Clin Pharmacol 20(1):61–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Abernethy DR, Greenblatt DJ (1985b) Phenytoin disposition in obesity: determination of loading dose. Arch Neurol 42(5):468–471

    Article  CAS  PubMed  Google Scholar 

  46. Derry CL et al (1995) Pharmacokinetics and pharmacodynamics of triazolam after two intermittent doses in obese and normal-weight men. J Clin Psychopharmacol 15(3):197–205

    Article  CAS  PubMed  Google Scholar 

  47. Flechner SM et al (1989) The impact of body weight on cyclosporine pharmacokinetics in renal transplant recipients. Transplantation 47(5):806–810

    Article  CAS  PubMed  Google Scholar 

  48. Chiney MS, Schwarzenberg SJ, Laurelle AJ (2011) Altered xanthine oxidase and N-acetyltransferase activity in obese children. Br J Clin Pharmacol 72(1):109–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. DuBois BN et al (2012) Maternal obesity alters feto-placental cytochrome P4501A1 activity. Placenta 33(12):1045–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shakhnovich V et al (2018) Obese children require lower doses of pantoprazole than nonobese peers to achieve equal systemic drug exposures. J Pediatr 193:102-108 e1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shakhnovich V et al (2019) Lean body weight dosing avoids excessive systemic exposure to proton pump inhibitors for children with obesity. Pediatr Obes 14(1):e12459

    Article  Google Scholar 

  52. Powis G et al (1987) Effect of body weight on the pharmacokinetics of cyclophosphamide in breast cancer patients. Cancer Chemother Pharmacol 20(3):219–222

    Article  CAS  PubMed  Google Scholar 

  53. Kamimori G et al (1987) The effects of obesity and exercise on the pharmacokinetics of caffeine in lean and obese volunteers. Eur J Clin Pharmacol 31(5):595–600

    Article  CAS  PubMed  Google Scholar 

  54. Greenblatt DJ et al (1987) Trazodone kinetics: effect of age, gender, and obesity. Clin Pharmacol Ther 42(2):193–200

    Article  CAS  PubMed  Google Scholar 

  55. Thompson PA et al (2009) Impact of body composition on pharmacokinetics of doxorubicin in children: a Glaser Pediatric Research Network study. Cancer Chemother Pharmacol 64(2):243

    Article  CAS  PubMed  Google Scholar 

  56. Yee GC et al (1988) Effect of obesity on cyclosporine disposition. Transplantation 45(3):649–650

    Article  CAS  PubMed  Google Scholar 

  57. Lucas D et al (1998) Cytochrome P450 2E1 activity in diabetic and obese patients as assessed by chlorzoxazone hydroxylation. Fundam Clin Pharmacol 12(5):553–558

    Article  CAS  PubMed  Google Scholar 

  58. Cheymol G et al (1995) The pharmacokinetics of dexfenfluramine in obese and non-obese subjects. Br J Clin Pharmacol 39(6):684

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Le Jeunne C et al (1991) Pharmacokinetics of intravenous bisoprolol in obese and non-obese volunteers. Eur J Clin Pharmacol 41(2):171–174

    Article  PubMed  Google Scholar 

  60. Caraco Y et al (1995b) Caffeine pharmacokinetics in obesity and following significant weight reduction. Int J Obes Relat Metab Disord 19(4):234–239

    CAS  PubMed  Google Scholar 

  61. Caraco Y et al (1995c) Antipyrine disposition in obesity: evidence for negligible effect of obesity on hepatic oxidative metabolism. Eur J Clin Pharmacol 47(6):525–530

    Article  CAS  PubMed  Google Scholar 

  62. van Rongen A et al (2016) Morbidly obese patients exhibit increased CYP2E1-mediated oxidation of acetaminophen. Clin Pharmacokinet 55(7):833–847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Rongen A et al (2015) Population pharmacokinetics of midazolam and its metabolites in overweight and obese adolescents. Br J Clin Pharmacol 80(5):1185–1196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. van Rongen A et al (2018) Higher midazolam clearance in obese adolescents compared with morbidly obese adults. Clin Pharmacokinet 57(5):601–611

    Article  PubMed  CAS  Google Scholar 

  65. Paulzen M et al (2016) Body mass index (BMI) but not body weight is associated with changes in the metabolism of risperidone. A pharmacokinetics-based hypothesis. Psychoneuroendocrinology 73:9–15

    Article  CAS  PubMed  Google Scholar 

  66. Schoretsanitis G et al (2018) Sex and body weight are major determinants of venlafaxine pharmacokinetics. Int Clin Psychopharmacol 33(6):322–329

    Article  PubMed  Google Scholar 

  67. Krogstad V et al (2020) A comparative analysis of cytochrome P450 activities in paired liver and small intestinal samples from patients with obesity. Drug Metab Dispos 48(1):8–17

    Article  CAS  PubMed  Google Scholar 

  68. Sandvik P et al (2020) Association between low body weight and cytochrome P-450 enzyme activity in patients with anorexia nervosa. Pharmacol Res Perspect 8(3):e00615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bowman S et al (1986) A comparison of the pharmacokinetics of propranolol in obese and normal volunteers. Br J Clin Pharmacol 21(5):529–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fukuchi H et al (2009) Effect of obesity on serum amiodarone concentration in Japanese patients: population pharmacokinetic investigation by multiple trough screen analysis. J Clin Pharm Ther 34(3):329–336

    Article  CAS  PubMed  Google Scholar 

  71. Gade C et al (2018) Higher chlorzoxazone clearance in obese children compared with nonobese peers. Br J Clin Pharmacol 84(8):1738–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lind MJ et al (1989) Prolongation of ifosfamide elimination half-life in obese patients due to altered drug distribution. Cancer Chemother Pharmacol 25(2):139–142

    Article  CAS  PubMed  Google Scholar 

  73. Tabur S et al (2016) CYP gene expressions in obesity-associated metabolic syndrome. Obes Res Clin Pract 10(6):719–723

    Article  PubMed  Google Scholar 

  74. Viriyayudhakorn S et al (2000) Pharmacokinetics of quinine in obesity. Trans R Soc Trop Med Hyg 94(4):425–428

    Article  CAS  PubMed  Google Scholar 

  75. Rodríguez-Morató J et al (2019) Short-and medium-term impact of bariatric surgery on the activities of CYP2D6, CYP3A4, CYP2C9, and CYP1A2 in morbid obesity. Sci Rep 9(1):1–9

    Article  CAS  Google Scholar 

  76. Wójcicki J et al (2003) Comparative pharmacokinetics and pharmacodynamics of propranolol and atenolol in normolipaemic and hyperlipidaemic obese subjects. Biopharm Drug Dispos 24(5):211–218

    Article  PubMed  CAS  Google Scholar 

  77. Anderson KE, Conney AH, Kappas A (1979) Nutrition and oxidative drug metabolism in man: relative influence of dietary lipids, carbohydrate, and protein. Clin Pharmacol Ther 26(4):493–501

    Article  CAS  PubMed  Google Scholar 

  78. Feldman CH et al (1982) Interaction between nutrition and theophylline metabolism in children. Ther Drug Monit 4(1):69–76

    Article  CAS  PubMed  Google Scholar 

  79. Gupta SK, Benet LZ (1990) High-fat meals increase the clearance of cyclosporine. Pharm Res 7(1):46–48

    Article  CAS  PubMed  Google Scholar 

  80. Juan D et al (1986) Effects of dietary protein on theophylline pharmacokinetics and caffeine and aminopyrine breath tests. Clin Pharmacol Ther 40(2):187–194

    Article  CAS  PubMed  Google Scholar 

  81. Kappas A et al (1976) Influence of dietary protein and carbohydrate on antipyrine and theophylline metabolism in man. Clin Pharmacol Ther 20(6):643–653

    Article  CAS  PubMed  Google Scholar 

  82. Patel CG et al (2010) Effect of a high-fat meal on the pharmacokinetics of saxagliptin in healthy subjects. J Clin Pharmacol 50(10):1211–1216

    Article  CAS  PubMed  Google Scholar 

  83. Wissel P, Denke M, Inturrisi C (1987) A comparison of the effects of a macrobiotic diet and a Western diet on drug metabolism and plasma lipids in man. Eur J Clin Pharmacol 33(4):403–407

    Article  CAS  PubMed  Google Scholar 

  84. Thompson P et al (1983) The effect of diet upon serum concentrations of theophylline. Br J Clin Pharmacol 16(3):267–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Woodcock B, Kraemer N, Rietbrock N (1986) Effect of a high protein meal on the bioavailability of verapamil. Br J Clin Pharmacol 21(3):337–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Balabaud C, Vinon G, Paccalin J (1979) Influence of dietary protein and carbohydrate on phenytoin metabolism in man. Br J Clin Pharmacol 8(4):369–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lammers LA et al (2018b) Nutritional status differentially alters cytochrome P450 3A4 (CYP3A4) and uridine 5′-diphospho-glucuronosyltransferase (UGT) mediated drug metabolism: effect of short-term fasting and high fat diet on midazolam metabolism. Eur J Drug Metab Pharmacokinet 43(6):751–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chan LN et al (2015) Proximal Roux-en-Y gastric bypass alters drug absorption pattern but not systemic exposure of CYP 3A4 and P-glycoprotein substrates. Pharmacother J Human Pharmacol Drug Ther 35(4):361–369

    Article  CAS  Google Scholar 

  89. Emery MG et al (2003) CYP2E1 activity before and after weight loss in morbidly obese subjects with nonalcoholic fatty liver disease. Hepatology 38(2):428–435

    Article  CAS  PubMed  Google Scholar 

  90. Brill MJ et al (2016) Semiphysiologically based pharmacokinetic model for midazolam and CYP3A mediated metabolite 1-OH-midazolam in morbidly obese and weight loss surgery patients. CPT Pharmacomet Syst Pharmacol 5(1):20–30

    Article  CAS  Google Scholar 

  91. Puris E et al (2019) Laparoscopic Roux-en-Y gastric bypass surgery influenced pharmacokinetics of several drugs given as a cocktail with the highest impact observed for CYP1A2, CYP2C8 and CYP2E1 substrates. Basic Clin Pharmacol Toxicol 125(2):123–132

    CAS  PubMed  Google Scholar 

  92. Lloret-Linares C et al (2019) CYP450 activities before and after Roux-en-Y gastric bypass: correlation with their intestinal and liver content. Surg Obes Relat Dis 15(8):1299–1310

    Article  PubMed  Google Scholar 

  93. Caraco Y et al (1992) Significant weight reduction in obese subjects enhances carbamazepine elimination. Clin Pharmacol Ther 51(5):501–506

    Article  CAS  PubMed  Google Scholar 

  94. Reidenberg MM, Vesell ES (1975) Unaltered metabolism of antipyrine and tolbutamide in fasting man. Clin Pharmacol Ther 17(6):650–656

    Article  CAS  PubMed  Google Scholar 

  95. Tranvouez J-L et al (1985) Hepatic antipyrine metabolism in malnourished patients: influence of the type of malnutrition and course after nutritional rehabilitation. Am J Clin Nutr 41(6):1257–1264

    Article  CAS  PubMed  Google Scholar 

  96. Ashton M et al (1993) Disposition of salicylic acid in malnourished Ethiopian children after single oral dose. Clin Pharmacokinet 25(6):483–494

    Article  CAS  PubMed  Google Scholar 

  97. Buchanan N et al (1980) Antipyrine metabolite formation in children in the acute phase of malnutrition and after recovery. Br J Clin Pharmacol 10(4):363–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Oshikoya K et al (2015) Lack of a significant change in caffeine metabolism in underweight children as determined by the caffeine breath test. Arch Dis Childh 100(7):689–693

    Article  CAS  PubMed  Google Scholar 

  99. Zanger UM, Schwab M (2013) Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 138(1):103–141

    Article  CAS  PubMed  Google Scholar 

  100. Li AP, Kaminski DL, Rasmussen A (1995) Substrates of human hepatic cytochrome P450 3A4. Toxicology 104(1–3):1–8

    Article  CAS  PubMed  Google Scholar 

  101. Kolwankar D et al (2007) Association between nonalcoholic hepatic steatosis and hepatic cytochrome P-450 3A activity. Clin Gastroenterol Hepatol 5(3):388–393

    Article  CAS  PubMed  Google Scholar 

  102. Brill MJ et al (2015) The pharmacokinetics of the CYP3A substrate midazolam in morbidly obese patients before and one year after bariatric surgery. Pharm Res 32(12):3927–3936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Thörn HA et al (2011) Drug metabolism of CYP3A4, CYP2C9 and CYP2D6 substrates in pigs and humans. Eur J Pharm Sci 43(3):89–98

    Article  PubMed  CAS  Google Scholar 

  104. Lammers LA et al (2017) Effect of short-term fasting on systemic cytochrome P450-mediated drug metabolism in healthy subjects: a randomized, controlled, crossover study using a cocktail approach. Clin Pharmacokinet 56(10):1231–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Blouin RA, Elgert JF, Bauer LA (1980) Theophylline clearance: effect of marked obesity. Clin Pharmacol Ther 28(5):619–623

    Article  CAS  PubMed  Google Scholar 

  106. Tateishi T et al (1998) A comparison of the inhibitory effects of four volatile anaesthetics on the metabolism of chlorzoxazone, a substrate for CYP2E1, in rabbits. Acta Anaesthesiol Scand 42(9):1028–1032

    Article  CAS  PubMed  Google Scholar 

  107. Cederbaum AI (2012) Alcohol metabolism. Clin Liver Dis 16(4):667–685

    Article  PubMed  PubMed Central  Google Scholar 

  108. Yuan R et al (2002) Evaluation of cytochrome P450 probe substrates commonly used by the pharmaceutical industry to study in vitro drug interactions. Drug Metab Dispos 30(12):1311–1319

    Article  CAS  PubMed  Google Scholar 

  109. Organization WH (2017) Depression and other common mental disorders: global health estimates. 2017, World Health Organization

  110. Luppino FS et al (2010) Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies. Arch Gen Psychiatry 67(3):220–229

    Article  PubMed  Google Scholar 

  111. Dempaire I, Guico-Pabia CJ, Preskorn SH (2011) Antidepressant treatment and altered CYP2D6 activity: are pharmacokinetic variations clinically relevant? J Psychiatr Pract 17(5):330–339

    Article  Google Scholar 

  112. Hicks JK et al (2017) Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther 102(1):37–44

    Article  CAS  PubMed  Google Scholar 

  113. Dobrinas M et al (2011) Impact of smoking, smoking cessation, and genetic polymorphisms on CYP1A2 activity and inducibility. Clin Pharmacol Ther 90(1):117–125

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None. All authors have read and approved the final manuscript.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

AS and DJM designed research; MZ and AS conducted research; MZ, MK and ME screened studies; MZ, MK and ME extracted data and MZ, AS and DJM. wrote the paper. AS had primary responsibility for final content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ahmad Saedisomeolia.

Ethics declarations

Conflict of interest

Meysam Zarezadeh: No conflicts of interest. Ahmad Saedisomeolia: No conflicts of interest. Mahoor Shekarabi: No conflicts of interest. Masoud Khorshidi: No conflicts of interest. Mohammad Reza Emami: No conflicts of interest. Daniel J. Müller: No conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarezadeh, M., Saedisomeolia, A., Shekarabi, M. et al. The effect of obesity, macronutrients, fasting and nutritional status on drug-metabolizing cytochrome P450s: a systematic review of current evidence on human studies. Eur J Nutr 60, 2905–2921 (2021). https://doi.org/10.1007/s00394-020-02421-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02421-y

Keywords

Navigation