Skip to main content
Log in

Signals and cues in the recruitment behavior of stingless bees (Meliponini)

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Since the seminal work of Lindauer and Kerr (1958), many stingless bees have been known to effectively recruit nestmates to food sources. Recent research clarified properties of several signals and cues used by stingless bees when exploiting food sources. Thus, the main source of the trail pheromone in Trigona are the labial, not however the mandibular glands. In T. recursa and T. spinipes, the first stingless bee trail pheromones were identified as hexyl decanoate and octyl decanoate, respectively. The attractant footprints left by foragers at the food source are secreted by glandular epithelia of the claw retractor tendon, not however by the tarsal gland. Regarding intranidal communication, the correlation between a forager’s jostling rate and recruitment success stresses the importance of agitated running and jostling. There is no evidence for a “dance” indicating food source location, however, whereas the jostling rate depends on food quality. Thoracic vibrations, another intranidal signal well known in Melipona, were analyzed using modern technology and distinguishing substrate vibrations from airborne sound. Quantitative data now permit estimates of signal and potential communication ranges. Airflow jets as described for the honeybee were not found, and thoracic vibrations do not “symbolically” encode visually measured distance in M. seminigra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aguilar I, Briceño D (2002) Sounds in Melipona costaricensis (Apidae: Meliponini): effect of the sugar concentration and nectar source distance. Apidologie 33:375–388

    Article  CAS  Google Scholar 

  • Aguilar I, Sommeijer MJ (1996) Communication in stingless bees: are the anal substances deposited by Melipona favosa scentmarks? Proc Exp Appl Entomol, NEV, Amsterdam, 7:57–63

    Google Scholar 

  • Aguilar I, Sommeijer M (2001) The deposition of anal excretions by Melipona favosa foragers (Apidae: Meliponinae): behavioural observations concerning the location of food sources. Apidologie 32:37–48

    Article  Google Scholar 

  • Aguilar I, Fonseca A, Biesmeijer JC (2005) Recruitment and communication of food source location in three species of stingless bees (Hymenoptera, Apidae, Meliponini). Apidologie 36:313–324

    Article  Google Scholar 

  • Biesmeijer JC, Slaa EJ (2004) Information flow and organization of stingless bee foraging. Apidologie 35: 143–157

    Article  Google Scholar 

  • Boogert NJ, Hofstede FE, Aguilar Monge I (2006) The use of food source scent marks by the stingless bee Trigona corvina (Hymenoptera: Apidae): the importance of the depositor’s identity. Apidologie 37: 366–375

    Article  Google Scholar 

  • Butler CG, Fletcher DJC, Watler D (1969) Nest-entrance marking with pheromones by the honeybee Apis mellifera L., and a wasp, Vespula vulgaris L. Anim Behav 7:142–147

    Article  Google Scholar 

  • Crane E (1990) Bees and beekeeping: science, practice and world resources. Comstock Publishing Associates (Cornell University Press), Ithaca, p 614

    Google Scholar 

  • da Cruz-Landim C (1967) Estudo comparativo de algumas glândulas das abelhas (Hymenoptera, Apoidae) e respectivas implicações evolutivas. Arq de Zool São Paulo 15:177–290

    Google Scholar 

  • Dahl F (1885) Die Fussdrüsen der Insekten. Arch Mikroskop Anat 25:236–262

    Google Scholar 

  • Dreller C, Kirchner WH (1993) Hearing in honeybees: localization of the auditory sense organ. J Comp Physiol A 173: 275–279

    Article  Google Scholar 

  • Dyer FC (2002) The biology of the dance language. Annu Rev Entomol 47:917–949

    Article  PubMed  CAS  Google Scholar 

  • Eltz T (2006) Tracing pollinator footprints on natural flowers. J Chem Ecol 32: 907–915

    Article  PubMed  CAS  Google Scholar 

  • Esch H (1961) Über die Schallerzeugung beim Werbetanz der Honigbiene. Z vergl Physiol 45: 1–11

    Article  Google Scholar 

  • Esch H (1967) Die Bedeutung der Lauterzeugung für die Verständigung der stachellosen Bienen. Z vergl Physiol 56:199–220

    Article  Google Scholar 

  • Esch H, Esch I, Kerr WE (1965) Sound: an element common to communication of stingless bees and to dances of the honey bee. Science 149:320–321

    Article  PubMed  Google Scholar 

  • Federle W, Brainerd EL, McMahon TA, Hölldobler B (2001) Biomechanics of the movable pretarsal adhesive organ in ants and bees. Proc Natl Acad Sci USA 98:6215–6220

    Article  PubMed  CAS  Google Scholar 

  • Ferguson A, Free JB (1979) Production of a forage-marking pheromone by the honeybee. J Apic Res 18:128–135

    Google Scholar 

  • Fernández PC, Farina WM (2002) Individual recruitment in honeybees, Apis mellifera L. The effect of food source profitability on the rate of bees arriving at the feeding place. Acta Ethol 4:103–108

    Article  Google Scholar 

  • Free JB (1987) Pheromones of social bees. Cornell University Press, Ithaca, NY

    Google Scholar 

  • Goulson D, Stout JC, Langley J, Hughes WOH (2000) Identity and function of scent marks deposited by foraging bumblebees. J Chem Ecol 26:2897–2911

    Article  CAS  Google Scholar 

  • Goulson D, Chapman JW, Hughes WOH (2001) Discrimination of unrewarding flowers by bees: direct detection of rewards and use of repellent scent marks. J Insect Behav 14:669–678

    Article  Google Scholar 

  • Hanauer-Thieser U, Nachtigall W (1995) Flight of the honey bee VI: energetics of wind tunnel exhaustion flights at defined fuel content, speed adaptation and aerodynamics. J Comp Physiol B 65:471–483

    Google Scholar 

  • Heard TA (1999) The role of stingless bees in crop pollination. Annu Rev Entomol 44:183–206

    Article  PubMed  CAS  Google Scholar 

  • Heran H (1959) Wahrnehmung zur Regelung der Flugeigengeschwindigkeit bei Apis mellifica L. Z vergl Physiol 42:103–163

    Article  Google Scholar 

  • Hrncir M, Jarau S, Zucchi R, Barth FG (2000) Recruitment behavior in stingless bees, Melipona scutellaris and M. quadrifasciata. II. Possible mechanisms of communication. Apidologie 31:93–113

    Article  Google Scholar 

  • Hrncir M, Zucchi R, Barth FG (2002) Mechanical recruitment signals in Melipona vary with gains and costs at the food source. Anais do V. Encontro sobre Abelhas, Ribeirão Preto, pp 172–175

    Google Scholar 

  • Hrncir M, Jarau S, Zucchi R, Barth FG (2003) A stingless bee (Melipona seminigra) uses optic flow to estimate flight distances. J Comp Physiol A 189:761–768

    Article  CAS  Google Scholar 

  • Hrncir M, Jarau S, Zucchi R, Barth FG (2004a) On the origin and properties of scent marks deposited at the food source by a stingless bee, Melipona seminigra. Apidologie 35:3–13

    Article  Google Scholar 

  • Hrncir M, Jarau S, Zucchi R, Barth FG (2004b) Thorax vibrations of a stingless bee (Melipona seminigra). I. No influence of visual flow. J Comp Physiol A 190: 539–548

    CAS  Google Scholar 

  • Hrncir M, Jarau S, Zucchi R, Barth FG (2004c) Thorax vibrations of a stingless bee (Melipona seminigra). II. Dependence on sugar concentration. J Comp Physiol A 190: 549–560

    CAS  Google Scholar 

  • Hrncir M, Barth FG, Tautz J (2006a) Vibratory and airborne-sound signals in bee communication (Hymenoptera). In: Drosopoulous S, MF Claridge (eds) Insect sounds and communication. CRC Press, Boca Raton, pp 421–436

    Google Scholar 

  • Hrncir M, Schmidt VM, Schorkopf DLP, Jarau S, Zucchi R, Barth FG (2006b) Vibrating the food receivers: a direct way of signal transmission in stingless bees (Melipona seminigra). J Comp Physiol A 192:879–887

    Article  Google Scholar 

  • Hrncir M, Gravel AI, Schmidt VM, Schorkopf DLP, Zucchi R, Barth FG (2008a) Thoracic vibrations in stingless bees (Melipona seminigra): resonances of the thorax influence vibrations associated with flight but not those associated with sound production. J Exp Biol 211(Pt 5):678–685

    Article  PubMed  Google Scholar 

  • Hrncir M, Schorkopf DL, Schmidt VM, Zucchi R, Barth FG (2008b) The sound field generated by a vibrating stingless bee (Melipona scutellaris): signals potentially serving recruitment behaviours. J Exp Biol 211:686–698

    Article  PubMed  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Springer, Berlin

    Google Scholar 

  • Jarau S, Hrncir M, Schmidt VM, Zucchi R, Barth FG (2003) Effectiveness of recruitment behavior in stingless bees (Apidae, Meliponini). Insectes Soc 20:365–374

    Article  Google Scholar 

  • Jarau S, Hrncir M, Ayasse M, Schulz C, Francke W, Zucchi R, Barth FG (2004a) A stingless bee marks food sources with a pheromone from its claw retractor tendons. J Chem Ecol 30:793–804

    Article  PubMed  CAS  Google Scholar 

  • Jarau S, Hrncir M, Zucchi R, Barth FG (2004b) A stingless bee uses labial gland secretions for scent trail communication (Trigona recursa Smith 1863). J Comp Physiol A 190:233–239

    Article  CAS  Google Scholar 

  • Jarau S, Hrncir M, Zucchi R, Barth FG (2005) Morphology and structure of the tarsal glands of the stingless bee Melipona seminigra friese 1903. Naturwissenschaften 92:147–150

    Article  PubMed  CAS  Google Scholar 

  • Jarau S, Schulz C, Hrncir M, Francke W, Zucchi R, Barth FG, Ayasse M (2006) Hexyl decanoate, the first trail pheromone compound identified in a stingless bee, Trigona recursa. J Chem Ecol 32:1555–1564

    Article  PubMed  CAS  Google Scholar 

  • Kerr WE, Ferreira A, de Mattos NS (1963) Communication among stingless bees: additional data (Hymenoptera: Apidae). J New York Entomol Soc 71:80–90

    Google Scholar 

  • Kilpinen O, Storm J (1997) Biophysics of the subgenual organ of the honeybee, Apis mellifera. J Comp Physiol A 181:309–318

    Article  Google Scholar 

  • Kirchner WH (1994) Hearing in honeybees: the mechanical response of the bee’s antenna to near field sound. J Comp Physiol A 175:261–265

    Article  Google Scholar 

  • Krebs JR, Davies NB (1993) An introduction to behavioral ecology, 3rd edn. Blackwell Science, Oxford

    Google Scholar 

  • Lensky Y, Cassier P, Finkel A, Delorme-Joulie C, Levinsohn M (1985) The fine structure of the tarsal glands of the honeybee Apis mellifera L. (Hymenoptera). Cell Tissue Res 240:153–158

    Article  Google Scholar 

  • Lindauer M (1956) Über die Verständigung bei indischen Bienen. Z vergl Physiol 38:521–557

    Article  Google Scholar 

  • Lindauer M, Kerr WE (1958) Die gegenseitige Verständigung bei den stachellosen Bienen. Z vergl Physiol 41:405–434

    Article  Google Scholar 

  • Lindauer M, Kerr WE (1960) Communication between workers of stingless bees. Bee World 41:29–41, 65–71

    Google Scholar 

  • Lorenz K (1939) Vergleichende Verhaltensforschung. Zool Anz Suppl 12:69–102

  • Michelsen A (2003) Signals and flexibility in the dance communication of honeybees. J Comp Physiol A 189:165–174

    Google Scholar 

  • Michelsen A, Towne WF, Kirchner WH, Kryger P (1987) The acoustic near field of a dancing honeybee. J Comp Physiol A 161:633–643

    Article  Google Scholar 

  • Michener CD (2000) The bees of the world. John Hopkins University Press, Baltimore

    Google Scholar 

  • Michener CD, Grimaldi DA (1988) The oldest fossil bee: apoid history, evolutionary stasis, and antiquity of social behavior. Proc Natl Acad Sci USA 85:6424–6426

    Article  PubMed  Google Scholar 

  • Moore BP (1974) Pheromones in the termite societies. In: Birch MC (ed) Pheromones. North-Holland Publishing Company, Amsterdam, pp 250–266

    Google Scholar 

  • Nieh JC (1998) The role of a scent beacon in the communication of food location by the stingless bee, Melipona panamica. Behav Ecol Sociobiol 43:47–58

    Article  Google Scholar 

  • Nieh JC (2004) Recruitment communication in stingless bees (Hymenoptera, Apidae, Meliponini). Apidologie 35:159–182

    Article  Google Scholar 

  • Nieh JC, Roubik DW (1998) Potential mechanisms for the communication of height and distance by a stingless bee, Melipona panamica. Behav Ecol Sociobiol 43:387–399

    Article  Google Scholar 

  • Nieh JC, Contrera FAL, Nogueira-Neto P (2003a) Pulsed mass recruitment by a stingless bee, Trigona hyalinata. Proc R Soc Lond B Biol Sci 270: 2191–2196

    Article  Google Scholar 

  • Nieh JC, Contrera FAL, Rangel J, Imperatriz-Fonseca VL (2003b) Effect of food location and quality on recruitment sounds and success in two stingless bees, Melipona mandacaia and Melipona bicolor. Behav Ecol Sociobiol 55:87–94

    Article  Google Scholar 

  • Nieh JC, Ramirez S, Nogueira-Neto P (2003c) Multi-source odor-marking of food by a stingless bee, Melipona mandacaia. Behav Ecol Sociobiol 54:578–586

    Article  Google Scholar 

  • Nieh JC, Barreto LS, Contrera FAL, Imperatriz-Fonseca V (2004a) Olfactory eavesdropping by a competitively foraging stingless bee, Trigona spinipes. Proc R Soc Lond B Biol Sci 271:1633–1640

    Article  Google Scholar 

  • Nieh JC, Contrera FAL, Yoon RR, Barreto LS, Imperatriz-Fonseca VL (2004b) Polarized short odor-trail recruitment communication by a stingless bee, Trigona spinipes. Behav Ecol Sociobiol 56:435–448

    Article  Google Scholar 

  • Pouvreau A (1991) Morphology and histology of tarsal glands in bumble bees of the genera Bombus, Pyrobombus, and Megabombus. Can J Zool 69:866–872

    Article  Google Scholar 

  • Rohrseitz K, Kilpinen O (1997) Vibration transmission characteristics of the legs of freely standing honeybees. Zoology 100:80–84

    Google Scholar 

  • Roubik DW (1989) Ecology and natural history of tropical bees. Cambridge University Press, New York

    Google Scholar 

  • Saleh N, Chittka L (2006) The importance of experience in the interpretation of conspecific chemical signals. Behav Ecol Sociobiol 61:215–220

    Article  Google Scholar 

  • Samwald U (2000) Mechanismen der Futterplatzrekrutierung bei Melipona seminigra merillae CKLL (1919) (Hymenoptera; Apidae; Meliponinae). Diploma Thesis, University of Vienna

  • Sánchez D, Nieh JC, Hénaut Y, Cruz L, Vandame R (2004) High precision during food recruitment of experienced (reactivated) foragers in the stingless bee Scaptotrigona mexicana (Apidae, Meliponini). Naturwissenschaften 91:346–349

    Article  PubMed  CAS  Google Scholar 

  • Sánchez D, Kraus FB, de Jesús Hernandez M, Vandame R (2007) Experience, but not distance, influences the recruitment precision in the stingless bee Scaptotrigona mexicana. Naturwissenschaften 94:567–573

    Article  PubMed  CAS  Google Scholar 

  • Sandeman DC, Tautz J, Lindauer M (1996) Transmission of vibration across honeycombs and its detection by bee leg receptors. J Exp Biol 199:2585–2594

    PubMed  Google Scholar 

  • Schmidt VM, Zucchi R, Barth FG (2003) A stingless bee marks the feeding site in addition to the scent path (Scaptotrigona aff. depilis moure 1942). Apidologie 34:237–248

    Article  Google Scholar 

  • Schmidt VM, Zucchi R, Barth FG (2005) Scent marks left by Nannotrigona testaceicornis at the feeding site: cues rather than signals. Apidologie 36:285–291

    Article  Google Scholar 

  • Schmidt VM, Zucchi R, Barth FG (2006a) Recruitment in a scent trail laying stingless bee (Scaptotrigona aff. depilis): changes with reduction but not with increase of the energy gain. Apidologie 37:487–500

    Article  Google Scholar 

  • Schmidt VM, Schorkopf DLP, Hrncir M, Zucchi R, Barth FG (2006b) Collective foraging in a stingless bee: dependence on food profitability and sequence of discovery. Anim Behav 72:1309–1317

    Article  Google Scholar 

  • Schmidt VM, Hrncir M, Schorkopf DL, Mateús S, Zucchi R, Barth FG (2008) Food profitability affects intranidal recruitment behavior in the stingless bee Nannotrigona testaceicornis. Apidologie (in press)

  • Schmitt U, Lübke G, Francke W (1991) Tarsal secretion marks food sources in bumblebees (Hymenoptera: Apidae). Chemoecology 2:35–40

    Article  CAS  Google Scholar 

  • Schneider P (1975) Versuche zur Erzeugung des Verteidigungstones bei Hummeln. Zool Jb Physiol 79:111–127

    Google Scholar 

  • Schorkopf DL, Jarau S, Franke W, Twele R, Zucchi R, Hrncir M, Schmidt VM, Ayasse M, Barth FG (2007) Spitting out information: Trigona bees deposit saliva to signal resource locations. Proc R Soc B 274:895–898

    Article  PubMed  Google Scholar 

  • Seeley TD (1989) Social foraging in honey bees: how nectar foragers assess their colony’s nutritional status. Behav Ecol Sociobiol 24:181–199

    Article  Google Scholar 

  • Snodgrass RE (1956) Anatomy of the honey bee. Cornell University Press, Ithaca

    Google Scholar 

  • Srinivasan MS, Zhang SW, Altwein M, Tautz J (2000) Honeybee navigation: nature and calibration of the “odometer”. Science 287:851–853

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan MS, Zhang SW, Bidwell NJ (1997) Visually mediated odometry in honeybees. J Exp Biol 200:2522–2531

    Google Scholar 

  • Stout JC, Goulson D, Allen JA (1998) Repellent scent-marking of flowers by a guild of foraging bumblebees (Bombus spp.). Behav Ecol Sociobiol 43:317–326

    Article  Google Scholar 

  • Strauß G (2002) Die Rolle von Substratvibrationen als Mechanismus der Entfernungskommunikation bei Melipona seminigra FRIESE, 1907 (Hymenoptera; Apidae; Meliponinae). Diploma Thesis, University of Vienna

  • Villa JD, Weiss MR (1990) Observations on the use of visual and olfactory cues by Trigona spp foragers. Apidologie 21:541–545

    Article  Google Scholar 

  • von Frisch K (1965) Tanzsprache und Orientierung der Bienen. Springer, Berlin

    Google Scholar 

  • Wilms W, Imperatriz-Fonseca VL, Engels W (1996) Resource partitioning between highly eusocial bees and possible impact of the introduced Africanized honeybee on native stingless bees in the Brazilian Atlantic Forest. Stud Neotrop Fauna Environ 31:137–151

    Article  Google Scholar 

  • Winston ML (1987) The biology of the honey bee. Harvard University Press, Cambridge

    Google Scholar 

Download references

Acknowledgments

Our own research would not have been possible without the hospitality and advice we have enjoyed for many years in the laboratories of Professor Ronaldo Zucchi at the University of São Paulo in Ribeirão Preto. The enthusiasm and scientific contributions of our collaborators mentioned on the original publications and of numerous students of Vienna University are much appreciated. Particular thanks go to Veronika Schmidt and Dirk-Louis Schorkopf. Generous financial support of our studies came from the Austrian Science Foundation FWF through grants P 14328 and P 17530 to FGB. Our work also profited from the Karl von Frisch prize awarded to FGB by the German Zoological Society and from student grants of Vienna University awarded for studies abroad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich G. Barth.

Additional information

We dedicate this review to Martin Lindauer and Warwick Kerr who pioneered research on the communication and recruitment in stingless bees by studies reported in a seminal paper published in this Journal half a century ago in 1958.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barth, F.G., Hrncir, M. & Jarau, S. Signals and cues in the recruitment behavior of stingless bees (Meliponini). J Comp Physiol A 194, 313–327 (2008). https://doi.org/10.1007/s00359-008-0321-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-008-0321-7

Keywords

Navigation