Skip to main content

Advertisement

Log in

Multi-source odor-marking of food by a stingless bee, Melipona mandacaia

  • Original Article
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Social bees can deposit specialized glandular secretions, or signals, that allow foragers to revisit rewarding and to avoid unrewarding food sources. However, it is not known if bees can orient towards olfactory cues such as excreta deposited near food sources. We report that Melipona mandacaia foragers (stingless bees) deposit an odor cue, anal droplets, and a previously undescribed ventro-abdominal odor on food sources. Surprisingly, foragers deposited attractive odor marks on good food sources to which they recruited and on poor food sources to which they did not recruit. Foragers left the most anal droplets on dilute food sources to which they did not recruit (1.25-M sucrose solution), yet returning foragers were attracted to anal droplets obtained on poor food sources and presented in bioassays. Foragers were attracted to ventro-abdominal odors obtained on good food sources (2.5-M sucrose solution). Chemical extractions suggest that odor marks contain attractive polar compounds. We also provide the first detailed description of forager waggling and spinning behavior on poor and good food sources. Waggling may be a method of dispersing anal droplets and spinning may help foragers learn local landmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4

Similar content being viewed by others

References

  • Aguilar I, Sommeijer MJ (1996) Communication in stingless bees: are the anal substances deposited by Melipona favosa scent marks? Proc Sect Exp Appl Entomol Neth Entomol Soc 7:57−63

  • Aguilar I, Sommeijer M (2001) The deposition of anal excretions by Melipona favosa foragers (Apidae: Meliponinae): behavioural observations concerning the location of food sources. Apidologie 32:37–48

    Article  Google Scholar 

  • Bakeman R, Gottman JM (1986) Observing interaction: an introduction to sequential analysis. Cambridge University Press, New York

    Google Scholar 

  • Bertsch A (1984) Foraging in male bumblebees ( Bombus lucorum L.): maximizing energy or minimizing water load? Oecologia 62:325–336

  • Biesmeijer JC, de Vries H (2001) Exploration and exploitation of food sources by social insect colonies: a revision of the scout−recruit concept. Behav Ecol Sociobiol 49:89–99

    Article  Google Scholar 

  • Bradbury J, Vehrencamp SL (1988) Principles of animal communication. Sinauer, Sunderland, Mass.

  • Capaldi EA, Dyer FC (1999) The role of orientation flights on homing performance in honeybees. J Exp Biol 202:1655–1666

    PubMed  Google Scholar 

  • Cartwright BA, Collett TS (1983) Landmark learning in bees. J Comp Physiol A 151:521–543

    Google Scholar 

  • Cruz-Landim Dd (1967) Estudo comparativo de algumas glândulas das abelhas (Hymenoptera, Apoidea) e respectivas implicações evolutivas. Arq Zool (Sao Paulo) 15:177–290

    Google Scholar 

  • Cruz-López L, Patricio EFLRA, Morgan DE (2001) Sections of stingless bees: the Dufour gland of Nannotrigona testaceicornis. J Chem Ecol 27:69–80

    Article  PubMed  Google Scholar 

  • Dusenbery DB (1992) Sensory ecology: how organisms acquire and respond to information. Freeman, New York

    Google Scholar 

  • Free JB, Williams IH (1983) Scent-marking of flowers by honeybees. J Apic Res 22:86–90

    Google Scholar 

  • Free JB, Williams I, Pickett JA, Ferguson AW, Martin AP (1982) Attractiveness of (Z)-11-eicosen-1-ol to foraging honeybees. J Apic Res 21:151–156

    CAS  Google Scholar 

  • Frisch K von (1967) The dance language and orientation of bees. Belknap, Cambridge, Mass.

  • Goulson D, Stout JC, Langley J, Hughes WOH (2000) Identity and function of scent marks deposited by foraging bumblebees. J Chem Ecol 26:2897–2911

    CAS  Google Scholar 

  • Greenfield MD (2002) Signalers and receivers: mechanisms and evolution of arthropod communication. Oxford University Press, New York

    Google Scholar 

  • Hölldobler B, Wilson EO (1978) The multiple recruitment systems of the African weaver ant Oecophylla longinoda (Latreille) (Hymenoptera: Formicidae). Behav Ecol Sociobiol 3:19–60

    Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Belknap, Cambridge, Mass.

  • Hrncir M, Jarau S, Zucchi R, Barth FG (2003) On the origin and properties of scent marks deposited at the food source by a stingless bee, Melipona seminigra Friese 1903. Apidologie (in press)

  • Jander R (1997) Macroevolution of a fixed action pattern for learning: the exploration flights of bees and wasps. In: Greenberg G, Tobach E (eds) Comparative psychology of invertebrates: the field and laboratory study of insect behavior. Garland, New York, pp 79–99

  • Jander U, Jander R (2002) Allometry and resolution of bee eyes (Apoidea). Arthropod Struct Dev 30:179–193

    Article  Google Scholar 

  • Jarau S, Hrncir M, Zucchi R, Barth FG (2002) Footprint pheromones used to mark food sources by stingless bees. In: Billen J (ed) XIV International Congress of IUSSI: The golden jubilee proceedings. Hokkaido University Coop, Hokkaido University, Sapporo, Japan

  • Johnson LK (1981) Effect of flower clumping on defense of artificial flowers by aggressive stingless bees. Biotropica 13:151–157

    Google Scholar 

  • Kerr WE (1972) Orientação pelo sol em Trigona spinipes. Cienc Cult [Suppl]:341–342

  • Kerr WE (1973) Sun compass orientation in the stingless bees, Trigona ( Trigona) spinipes (Fabricius, 1793) (Apidae). Anais Acad Bras Cien 45:301–308

    Google Scholar 

  • Kerr WE, Rocha R (1988) Comunicação em Melipona rufiventris e Melipona compressipes. Cien Cult 40:1200–1203

    Google Scholar 

  • Kerr W, Ferreira A, Simões de Mattos N (1963) Communication among stingless bees−additional data (Hymenoptera: Apidae). J NY Entomol Soc 71:80–90

    Google Scholar 

  • Lehrer M (1991) Bees which turn back and look. Naturwissenschaften 78:274–276

    Google Scholar 

  • Lehrer M (1993) Why do bees turn back and look? J Comp Physiol A 172:549–563

    Google Scholar 

  • Lehrer M, Collett TS (1994) Approaching and departing bees learn different cues to the distance of a landmark. J Comp Physiol A 175:171–177

    Google Scholar 

  • Lello E (1976) Adnexal glands of the sting apparatus in bees: anatomy and histology, V (Hymenoptera: Apidae). J Kans Entomol Soc 49:85–99

    Google Scholar 

  • Lindauer M, Kerr WE (1958) Die gegenseitige Verständigung bei den stachellosen Bienen. Z Vergl Physiol 41:405–434

    Google Scholar 

  • Linsenmair KE (1987) Kin recognition in subsocial arthropods, in particular in the desert isopod, Hemilepistus reaumuri. In: Fletcher DJC, Michener CD (eds) Kin recognition in animals. Wiley, New York, pp 121–208

  • Nicolson SW (1990) Osmoregulation in a nectar-feeding insect, the carpenter bee, Xylocopa capitata: water excess and ion conservation. Physiol Entomol 15:433–440

    Google Scholar 

  • Nieh JC (1998) The role of a scent beacon in the communication of food location in the stingless bee, Melipona panamica. Behav Ecol Sociobiol 43:47–58

    Article  Google Scholar 

  • Nieh JC, Roubik DW (1995) A stingless bee ( Melipona panamica) indicates food location without using a scent trail. Behav Ecol Sociobiol 37:63–70

    Article  Google Scholar 

  • Nieh JC, Contrera FAL, Ramírez S, Imperatriz-Fonseca VL (2003) Variation in the ability to communicate 3-D resource location by stingless bees from different habitats. Anim Behav (in press)

  • Nogueira-Neto P (1997) Vida e criação de abelhas indígenas sem ferrão. Nogueirapis, Sao Paulo

  • O'Neal MCA, Markin JP (1973) Brood nutrition and parental relationships of the imported fire ant, Solenopsis invicta. J Ga Entomol Soc 8:294–303

    Google Scholar 

  • Pasedach-Poeverlein K (1940) Über das "Spritzen" der Bienen und über die Konzentrationsänderung ihres Honigblaseninhalts. Z Vergl Physiol 28:197–210

    Google Scholar 

  • Pflumm W (1969) Beziehungen zwischen Putzverhalten und Sammelbereitschaft bei der Honigbiene. Z Vergl Physiol 64:1–36

    Google Scholar 

  • Pflumm W (1973) Zur Steuerung der Putzbewegungen der Honigbiene. Behaviour 45:104–122

    Google Scholar 

  • Pflumm W (1983) Zum Sammel− und Putzverhalten der Honigbiene auf einer Abblühenden Zwergmispel ( Cotoneaster horizontalis). Behaviour 83:112–131

    Google Scholar 

  • Qiu PY, Ding HB, Tang YK, Xu RJ (1999) Determination of chemical composition of commercial honey by near-infrared spectroscopy. J Agric Food Chem 47:2760–2765

    Article  CAS  PubMed  Google Scholar 

  • Rau G (1970) Zur Steuerung der Honigmagenfüllung sammelnder Bienen an einer künstlichen Futterquelle. Z Vergl Physiol 66:1–21

    Google Scholar 

  • Rizzini CT (1997) Tratado de fitogeografia do Brasil, 2nd edn. Âmbito Cultural, Rio de Janeiro

  • Rocha ESMO (1970) Raiding in Melipona rufiventris flavolineata. In: Ceccato S (ed) Proceedings of the 22nd annual meeting of the sociedade brasileira para o progresso da ciencia. Soc Bras Prog Cienc (Brazil)

  • Roubik DW (1980) Foraging behavior of competing Africanized honeybees and stingless bees. Ecology 61:836–845

    Google Scholar 

  • Roubik DW (1989) Ecology and natural history of tropical bees. Cambridge University Press, New York

  • Roubik DW, Yanega D, Aluja SM, Buchmann SL, Inouye DW (1995) On optimal nectar foraging by some tropical bees (Hymenoptera: Apidae). Apidologie 26:197–211

    Google Scholar 

  • Schmidt VM, Zucchi R, Barth FG (2003) A stingless bee marks the feeding site in addition to the scent path (Scaptotrigona aff. deplis). Apidologie 34:237–248

    Google Scholar 

  • Seeley TD (1989) The honey bee colony as a superorganism. Am Sci 77:546–553

    Google Scholar 

  • Snyder LR, Kirkland JJ (1979) Introduction to modern liquid chromatography, 2nd edn. Wiley, New York

  • Stout JC, Goulson D (2001) The use of conspecific and interspecific scent marks by foraging bumblebees and honeybees. Anim Behav 62:183–189

    Article  Google Scholar 

  • Stout JC, Goulson D, Allen JA (1998) Repellent scent-marking of flowers by a guild of foraging bumblebees ( Bombus spp.). Behav Ecol Sociobiol 43:317–326

    Google Scholar 

  • Zeil J, Kelber A, Voss R (1996) Structure and function of learning flights in bees and wasps. J Exp Biol 199:245–252

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Zilá Luz Paulino Simões for generously providing supplies for our odor extraction experiments; Felipe A. L. Contrera and Vera L. Imperatriz-Fonseca for valuable assistance with the setup of the experiments; and Patrick Kelley for help with videotaping feeder behaviors. We would also like to thank caretakers Maridalva Arauso Dias and her husband Paulo Rovirsso Sousa Dias for their hospitality and hard work at the Fazenda Aretuzina. Melissa Thomas and four anonymous reviewers significantly enhanced the quality of this manuscript with their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Nieh.

Additional information

Communicated by R.F.A. Moritz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nieh, J.C., Ramírez, S. & Nogueira-Neto, P. Multi-source odor-marking of food by a stingless bee, Melipona mandacaia . Behav Ecol Sociobiol 54, 578–586 (2003). https://doi.org/10.1007/s00265-003-0658-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-003-0658-4

Keywords

Navigation