Skip to main content
Log in

Silencing of the MADS-Box Gene SlMADS83 Enhances Adventitious Root Formation in Tomato Plants

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Adventitious roots (ARs) are important for the growth of plants and the improvement in their stress resistance and survival capacity. Although many genes have been confirmed to be involved in adventitious root (AR) formation in Arabidopsis and tomato plants, MADS-box genes have rarely been mentioned. Here, we isolated a MADS-box gene named SlMADS83, which may negatively regulate AR formation in tomato plants, as the number of the ARs formed in the transgenic lines in which the SlMADS83 gene was silenced by RNA interference (RNAi) was increased. The above phenotype was further confirmed by the analysis of the macroscopic, anatomical, and molecular features and related statistical data. Previous Studies have proven that auxin can stimulate early AR primordium initiation. Interestingly, in the RNAi transgenic lines, the concentration of auxin in the hypocotyl base was increased, resulting in early induction of AR primordia initiation, promoting the formation of ARs. Briefly, SlMADS83 may play an important role in AR formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

RNAi:

RNA interference

IAA:

Indole-3-acetic acid

ACC:

1-Aminocyclopropane-1-carboxylate

References

  • Aerts N, De Bruijn S, Van Mourik H, Angenent GC, Van Dijk AD (2018) Comparative analysis of binding patterns of MADS-domain proteins in Arabidopsis thaliana. BMC Plant Biol 18:131. https://doi.org/10.1186/s12870-018-1348-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aharoni N, Lieberman M (1979) Ethylene as a regulator of senescence in tobacco leaf discs. Plant Physiol 64:801–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahkami AH, Lischewski S, Haensch KT, Porfirova S, Hofmann J, Rolletschek H, Melzer M, Franken P, Hause B, Druege U, Hajirezaei MR (2009) Molecular physiology of adventitious root formation in Petunia hybrida cuttings: involvement of wound response and primary metabolism. New Phytol 181:613–625

    Article  CAS  PubMed  Google Scholar 

  • Alexander L, Grierson D (2002) Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot 53:2039–2055

    Article  CAS  PubMed  Google Scholar 

  • Barry CS, Giovannoni JJ (2007) Ethylene and fruit ripening. J Plant Growth Regul 26:143–159

    Article  CAS  Google Scholar 

  • Barry CS, Fox EA, Yen H, Lee S, Ying T, Grierson D, Giovannoni JJ (2001) Analysis of the ethylene response in the epinastic mutant of tomato. Plant Physiol 127:58–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bleecker AB, Patterson SE (1997) Last exit: senescence, abscission, and meristem arrest in Arabidopsis. Plant Cell 9:1169–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blume B, Barry CS, Hamilton AJ, Bouzayen M, Grierson D (1997) Identification of transposon-like elements in non-coding regions of tomato ACC oxidase genes. Mol Gen Genet 254:297–303

    Article  CAS  PubMed  Google Scholar 

  • Chunyan Y, Yihua L, Aidong Z, Sha S, An Y, Linli H, Imran A, Yu L, Forde BG, Yinbo G (2015) MADS-box transcription factor OsMADS25 regulates root development through affection of nitrate accumulation in rice. PLoS ONE 10:e0135196. https://doi.org/10.1371/journal.pone.0135196

    Article  CAS  Google Scholar 

  • Correa LD, Troleis J, Mastroberti AA, Mariath JEA, Fett AG (2012) Distinct modes of adventitious rooting in Arabidopsis thaliana. Plant Biol 14:100–109

    Google Scholar 

  • De Klerk GJ, Van der Krieken W, De Jong JC (1999) Review the formation of adventitious roots: new concepts, new possibilities. Vitro Cell Dev-Pl 35:189–199

    Article  Google Scholar 

  • Dong TT, Hu ZL, Deng L, Wang Y, Zhu MK, Zhang JL, Chen GP (2013) A tomato MADS-box transcription factor, SlMADS1, acts as a negative regulator of fruit ripening. Plant Physiol 163:1026–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eum HL, Kim HB, Sang BC, Lee SK (2009) Regulation of ethylene biosynthesis by nitric oxide in tomato (Solanum lycopersicum L.) fruit harvested at different ripening stages. Eur Food Res Technol 228:331–338

    Article  CAS  Google Scholar 

  • Exposito-Rodriguez M, Borges AA, Borges-Perez A, Hernandez M, Perez JA (2007) Cloning and biochemical characterization of ToFZY, a tomato gene encoding a flavin monooxygenase involved in a tryptophan-dependent auxin biosynthesis pathway. J Plant Growth Regul 26:329–340

    Article  CAS  Google Scholar 

  • Exposito-Rodriguez M, Borges AA, Borges-Perez A, Perez JA (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 8:131–142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Exposito-Rodriguez M, Borges AA, Borges-Perez A, Perez JA (2011) Gene structure and spatiotemporal expression profile of tomato genes encoding YUCCA-like flavin monooxygenases: the ToFZY gene family. Plant Physiol Bioch 49:782–791

    Article  CAS  Google Scholar 

  • Falasca G, Altamura MM (2003) Histological analysis of adventitious rooting in Arabidopsis thaliana (L.) Heynh seedlings. Plant Biosyst 137:265–273

    Article  Google Scholar 

  • Guoping C, Rachel H, David W, Andy T, Zhefeng L, Donald G (2004) Identification of a specific isoform of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds. Plant Physiol 136:2641–2651

    Article  Google Scholar 

  • Gutierrez L, Bussell JD, Pacurar DI, Schwambach J, Pacurar M, Bellini C (2009) Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and MicroRNA abundance. Plant Cell 21:3119–3132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He W, Brumos J, Li H, Ji Y, Ke M, Gong X, Zeng Q, Li W, Zhang X, An F, Wen X, Li P, Chu J, Sun X, Yan C, Yan N, Xie DY, Raikhel N, Yang Z, Stepanova AN, Alonso JM, Guo H (2011) A small-molecule screen identifies L-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. Plant Cell 23:3944–3960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hileman LC, Sundstrom JF, Litt A, Chen M, Shumba T, Irish VF (2006) Molecular and phylogenetic analyses of the MADS-box gene family in tomato. Mol Biol Evol 23:2245–2258

    Article  CAS  PubMed  Google Scholar 

  • Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525–529

    Article  CAS  PubMed  Google Scholar 

  • Ivanchenko MG, Muday GK, Dubrovsky JG (2010) Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana. Plant J 55:335–347

    Article  CAS  Google Scholar 

  • John I, Drake R, Farrell AW, Lee P, Horton P, Grierson D (2010) Delayed leaf senescence in ethylene-deficient ACC-oxidase antisense tomato plants—molecular and physiological analysis. Plant J 7:483–490

    Article  Google Scholar 

  • Kater MM, Dreni L, Colombo L (2006) Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. J Exp Bot 57:3433–3444

    Article  CAS  PubMed  Google Scholar 

  • Kell DB (2011) Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration. Ann Bot 108:407–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koo SC, Bracko O, Park MS, Schwab R, Chun HJ, Park KM, Seo JS, Grbic V, Balasubramanian S, Schmid M, Godard F, Yun DJ, Lee SY, Cho MJ, Weigel D, Kim MC (2010) Control of lateral organ development and flowering time by the Arabidopsis thaliana MADS-box gene AGAMOUS-LIKE6. Plant J 62:807–816

    Article  CAS  PubMed  Google Scholar 

  • Li A, Chen G, Yu X, Zhu Z, Zhang L, Zhou S, Hu Z (2019) The tomato MADS-box gene SlMBP9 negatively regulates lateral root formation and apical dominance by reducing auxin biosynthesis and transport. Plant Cell Rep 38:951–963

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Xu ZH, Luo D, Xue HW (2003) Roles of OsCKI1, a rice casein kinase I, in root development and plant hormone sensitivity. Plant J 36:189–202

    Article  CAS  PubMed  Google Scholar 

  • Liu HJ, Wang SF, Yu XB, Yu J, He XW, Zhang SL, Shou HX, Wu P (2005) ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J 43:47–56

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Han X, Zhan G, Zhao Z, Feng Y, Wu C (2015) A novel sucrose-regulatory MADS-box transcription factor GmNMHC5 promotes root development and nodulation in soybean (Glycine max [L.] Merr.). Int J Mol Sci 16:20657–20673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig-Muller J, Vertocnik A, Town CD (2005) Analysis of indole-3-butyric acid-induced adventitious root formation on Arabidopsis stem segments. J Exp Bot 56:2095–2105

    Article  PubMed  Google Scholar 

  • Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, McSteen P, Zhao YD, Hayashi K, Kamiya Y, Kasahara H (2011) The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci USA 108:18512–18517

    Article  CAS  PubMed  Google Scholar 

  • Mignolli F, Mariotti L, Picciarelli P, Vidoz ML (2017) Differential auxin transport and accumulation in the stem base lead to profuse adventitious root primordia formation in the aerial roots (aer) mutant of tomato (Solanum lycopersicum L.). J Plant Physiol 213:55–65

    Article  CAS  PubMed  Google Scholar 

  • Muday GK, Rahman A, Binder BM (2012) Auxin and ethylene: collaborators or competitors? Trends Plant Sci 17:181–195

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Naramoto S (2017) Polar transport in plants mediated by membrane transporters: focus on mechanisms of polar auxin transport. Curr Opin Plant Biol 40:8–14

    Article  CAS  PubMed  Google Scholar 

  • Negi S, Sukumar P, Liu X, Cohen JD, Muday GK (2010) Genetic dissection of the role of ethylene in regulating auxin-dependent lateral and adventitious root formation in tomato. Plant J 61:3–15

    Article  CAS  PubMed  Google Scholar 

  • Nishimura T, Hayashi K, Suzuki H, Gyohda A, Takaoka C, Sakaguchi Y, Matsumoto S, Kasahara H, Sakai T, Kato J, Kamiya Y, Koshiba T (2014) Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis. Plant J 77:352–366

    Article  CAS  PubMed  Google Scholar 

  • Pacurar DI, Perrone I, Bellini C (2014) Auxin is a central player in the hormone cross-talks that control adventitious rooting. Physiol Plant 151:83–96

    Article  CAS  PubMed  Google Scholar 

  • Pattison RJ, Catala C (2012) Evaluating auxin distribution in tomato (Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families. Plant J 70:585–598

    Article  CAS  PubMed  Google Scholar 

  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203

    Article  CAS  PubMed  Google Scholar 

  • Petricka JJ, Winter CM, Benfey PN (2012) Control of Arabidopsis root development. Annu Rev Plant Biol 63:563–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picton S, Barton SL, Bouzayen M, Hamilton AJ, Grierson D (1993) Altered fruit ripening and leaf senescence in tomatoes expressing an antisense ethylene-forming enzyme transgene. Plant J 3:469–481

    Article  CAS  Google Scholar 

  • Puri S, Thompson FB (2003) Relationship of water to adventitious rooting in stem cuttings of Populus species. Agrofor Syst 58:1–9

    Article  Google Scholar 

  • Ruzicka K, Ljung K, Vanneste S, Podhorská R, Beeckman T, Friml J, Benková E (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19:2197–2212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaller GE, Binder BM (2017) Inhibitors of ethylene biosynthesis and signaling. Methods Mol Biol 1573:223–235

    Article  CAS  PubMed  Google Scholar 

  • Shi Z, Jiang Y, Han X, Liu X, Cao R, Qi M, Xu T, Li T (2017) SlPIN1 regulates auxin efflux to affect flower abscission process. Sci Rep 7:14919–14931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM (2005) A Link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17:2230–2242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepanova AN, Jeonga Y, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Doležal K, Schlereth A, Jürgens G, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191

    Article  CAS  PubMed  Google Scholar 

  • Strader LC, Beisner ER, Bonnie B (2009) Silver ions increase auxin efflux independently of effects on ethylene response. Plant Cell 21:3585–3590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun CH, Yu JQ, Wen LZ, Guo YH, Sun X, Hao YJ, Hu DG, Zheng CS (2017) Chrysanthemum MADS-box transcription factor CmANR1 modulates lateral root development via homo-/heterodimerization to influence auxin accumulation in Arabidopsis. Plant Sci. https://doi.org/10.1016/j.plantsci.2017.09.017

    Article  PubMed  Google Scholar 

  • Sun CH, Yu JQ, Duan X, Wang JH, Zhang QY, Gu KD, Hu DG, Zheng CS (2018) The MADS transcription factor CmANR1 positively modulates root system development by directly regulating CmPIN2 in chrysanthemum. Hortic Res 5:52. https://doi.org/10.1038/s41438-018-0061-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Beemster GT, Sandberg G, Bhalerao R, Ljung K, Bennett MJ (2007) Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19:2186–2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang W, Perry SE (2003) Binding site selection for the plant MADS domain protein AGL15: an in vitro and in vivo study. J Biol Chem 278:28154. https://doi.org/10.1074/jbc.M212976200

    Article  CAS  PubMed  Google Scholar 

  • Verstraeten I, Schotte S, Geelen D (2014) Hypocotyl adventitious root organogenesis differs from lateral root development. Front Plant Sci 5:495–507

    Article  PubMed  PubMed Central  Google Scholar 

  • Vidoz ML, Loreti E, Mensuali A, Alpi A, Perata P (2010) Hormonal interplay during adventitious root formation in flooded tomato plants. Plant J 63:551–562

    Article  CAS  PubMed  Google Scholar 

  • Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (Rin) locus. Science 296:343–346

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Zhu L, Shou HX, Wu P (2005) A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiol 46:1674–1681

    Article  CAS  PubMed  Google Scholar 

  • Xuhu G, Guoping C, Naeem M, Xiaohui Y, Boyan T, Anzhou L, Zongli H (2017) The MADS-box gene SlMBP11 regulates plant architecture and affects reproductive development in tomato plants. Plant Sci 258:90–101

    Article  CAS  Google Scholar 

  • Yamauchi T, Abe F, Kawaguchi K, Oyanagi A, Nakazono M (2014) Adventitious roots of wheat seedlings that emerge in oxygen-deficient conditions have increased root diameters with highly developed lysigenous aerenchyma. Plant Signal Behav 9:28506–28509

    Article  PubMed  CAS  Google Scholar 

  • Zhang HM, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407–409

    Article  CAS  PubMed  Google Scholar 

  • Zhuang X, Xu Y, Chong K, Lan L, Xue Y, Xu Z (2005) OsAGAP, an ARF-GAP from rice, regulates root development mediated by auxin in Arabidopsis. Plant, Cell Environ 28:147–156

    Article  CAS  Google Scholar 

  • Zhuang XL, Jiang JF, Li JH, Ma QB, Xu YY, Xue YB, Xu ZH, Chong K (2006) Over-expression of OsAGAP, an ARF-GAP, interferes with auxin influx, vesicle trafficking and root development. Plant J 48:581–591

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 31572129) and the Natural Science Foundation of Chongqing of China (No. cstc2015jcyjA80026).

Author information

Authors and Affiliations

Authors

Contributions

Z.H. and G.C. designed the research; A.L., Y.W., and H.L. performed the research; A.L. wrote the paper; Z.H. modified the paper. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Zongli Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Supplementary material 2 (DOCX 433 kb) Supplementary Fig. S1. Phylogenetic analyses and gene expression prediction.

Supplementary material 3 (DOCX 19 kb) Supplementary Table S1. Specific primer sequences used in this study.

344_2019_10035_MOESM4_ESM.docx

Supplementary material 4 (DOCX 16 kb) Supplementary Table S2. Relative potential MADS binding sites (GArG motifs) in the promoter sequences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, A., Chen, G., Wang, Y. et al. Silencing of the MADS-Box Gene SlMADS83 Enhances Adventitious Root Formation in Tomato Plants. J Plant Growth Regul 39, 941–953 (2020). https://doi.org/10.1007/s00344-019-10035-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-019-10035-w

Keywords

Navigation