Skip to main content
Log in

Expression of the tomato WRKY gene, SlWRKY23, alters root sensitivity to ethylene, auxin and JA and affects aerial architecture in transgenic Arabidopsis

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

WRKY transcription factors (TFs) are a large plant-specific family of TFs that govern development and biotic/abiotic stress responses in plants. We have identified SlWRKY23 as a gene primarily expressed in roots. SlWRKY23 encodes a protein of 320 amino acids that functions as a transcriptional activator. It is transcriptionally up-regulated by ethylene, BAP and salicylic acid treatment but suppressed by IAA. Expression of SlWRKY23 in transgenic Arabidopsis affects sensitivity of roots to ethylene, JA and auxin with transgenic plants showing hypersensitivity to ethylene, JA and auxin-mediated primary root growth inhibition. This hypersensitivity is correlated with higher expression of ERF1 and ARF5 that mediate responses to these hormones. SlWRKY23 expression also affects aerial growth with transgenic plants showing greater number of leaves but smaller rosettes. Flowering time is reduced in transgenic lines and these plants also show a greater number of inflorescence branches, siliques and seeds. The siliques are longer and compactly packed with seeds but seeds are smaller in size. Root biomass shows a 25% decrease in transgenic SlWRKY23 Arabidopsis plants at harvest compared with controls. The studies show that SlWRKY23 regulates plant growth possibly through modulation of genes controlling hormone responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bai Y, Sunarti S, Kissoudis C, Visser RG, van Der Linden G (2018) The role of tomato WRKY genes in plant responses to combined abiotic and biotic stresses. Front Plant Sci 9:801

    Article  PubMed  PubMed Central  Google Scholar 

  • Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Yang Y, Liu C, Zheng Y, Xu M, Wu N (2015) Characterization of WRKY transcription factors in Solanum lycopersicum reveals collinearity and their expression patterns under cold treatment. Biochem Biophys Res Commun 464:962–968

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Nolan TM, Ye H, Zhang M, Tong H, Xin P, Chu J, Chu C, Li Z, Yin Y (2017) Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses. Plant Cell 29:1425–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnapandi B, Bucki P, Braun MS (2017) SlWRKY45 nematode-responsive tomato WRKY gene enhances susceptibility to the root knot nematode M. javanica infection. Plant Signal Behav 12:e1356530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Ding ZJ, Yan JY, Li CX, Li GX, Wu YR, Zheng SJ (2015) Transcription factor WRKY 46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis. Plant J 84:56–69

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Expósito-Rodríguez M, Borges AA, Borges-Pérez A, Pérez JA (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 8:131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grunewald W, Karimi M, Wieczorek K, Van de Cappelle E, Wischnitzki E, Grundler F, Inze D, Beeckman T, Gheysen G (2008) A role for AtWRKY23 in feeding site establishment of plant parasitic nematodes. Plant Physiol 148:358–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grunewald W, De Smet I, Lewis DR, Lofke C, Jansen L, Goeminne G, Bossche RV, Karimi M, De Rybel B, Vanholme B, Teichmann T (2012) Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis. Proc Natl Acad Sci 109:1554–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grunewald W, De Smet I, De Rybel B, Robert HS, Van De Cotte B, Willemsen V, Gheysen G, Weijers D, Friml J, Beeckman T (2013) Tightly controlled WRKY23 expression mediates Arabidopsis embryo development. EMBO Rep 14:1136–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo D, Zhang J, Wang X, Han X, Wei B, Wang J, Li B, Yu H, Huang Q, Gu H, Qu LJ (2015) The WRKY transcription factor WRKY71/EXB1 controls shoot branching by transcriptionally regulating RAX genes in Arabidopsis. Plant Cell 27:3112–3127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardtke CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17:1405–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Gao Y, Liu J, Peng X, Niu X, Fei Z (2012) Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum. Mol Genet Genomics 287:495–513

    Article  CAS  PubMed  Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1 a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72:427–441

    Article  CAS  PubMed  Google Scholar 

  • Kim KC, Lai Z, Fan B, Chen Z (2008) Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell 20:2357–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, Swarup R, Weijers D, Calvo V, Parizot B, Herrera-Rodriguez MB, Offringa R (2007) Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19:3889–3900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Wang H, Yu D (2016) Arabidopsis WRKY transcription factors WRKY12 and WRKY13 oppositely regulate flowering under short day conditions. Mol Plant 9:1492–1503

    Article  CAS  PubMed  Google Scholar 

  • Liu ZQ, Yan L, Wu Z, Mei C, Lu K, Yu YT, Liang S, Zhang XF, Wang XF, Zhang DP (2012) Cooperation of three WRKY-domain transcription factors WRKY18 WRKY40 and WRKY60 in repressing two ABA-responsive genes ABI4 and ABI5 in Arabidopsis. J Exp Bot 63:6371–6392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A (2005) MINISEED3 (MINI3) a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci 102:17531–17536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao JL, Miao ZQ, Wang Z, Yu LH, Cai XT, Xiang CB (2016) Arabidopsis ERF1 mediates cross-talk between ethylene and auxin biosynthesis during primary root elongation by regulating ASA1 expression. PLoS Genet 12:e1005760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marchant A, Bhalerao R, Casimiro I, Eklof J, Casero PJ, Bennett M, Sandberg G (2002) AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell 14:589–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M (2007) ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19:118–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasternak T, Groot EP, Kazantsev FV, Teale W, Omelyanchuk N, Kovrizhnykh V, Palme K, Mironova VV (2019) Salicylic acid affects root meristem patterning via auxin distribution in a concentration-dependent manner. Plant Physiol 180:1725–1739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potschin M, Schlienger S, Bieker S, Zentgraf U (2014) Senescence networking: WRKY18 is an upstream regulator a downstream target gene, and a protein interaction partner of WRKY53. J Plant Growth Regul 33:106–118

    Article  CAS  Google Scholar 

  • Prat T, Hajny J, Grunewald W, Vasileva M, Molnar G, Tejos R, Schmid M, Sauer M, Friml J (2018) WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity. PLoS Genet 14:e1007177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Przemeck GK, Mattsson J, Hardtke CS, Sung ZR, Berleth T (1996) Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta 200:229–237

    Article  CAS  PubMed  Google Scholar 

  • Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao Y, Li X, Xu C, Wang S (2007) OsWRKY13 mediates rice disease resistance by regulating defense related genes in salicylate- and jasmonate-dependent signaling. Mol Plant Microbe Interact 20:492–499

    Article  CAS  PubMed  Google Scholar 

  • Qiu D, Xiao J, Xie W, Liu H, Li X, Xiong L, Wang S (2008) Rice gene network inferred from expression profiling of plants overexpressing OsWRKY13 a positive regulator of disease resistance. Mol Plant 1:538–551

    CAS  PubMed  Google Scholar 

  • Reichmann JL, Ratcliffe OJ (2000) A genomic perspective on plant transcription factors. Curr Opin Plant Biol 3:423–434

    Article  Google Scholar 

  • Robatzek S, Somssich IE (2002) Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev 16:1139–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich IE (1996) Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J 15:5690–5700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruzicka K, Ljung K, Vanneste S, Podhorska R, Beeckman T, Friml J, Benkova E (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19:2197–2212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Gene Dev 12:3703–3714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Street IH, Aman S, Zubo Y, Ramzan A, Wang X, Shakeel SN, Kieber JJ, Schaller GE (2015) Ethylene inhibits cell proliferation of the Arabidopsis root meristem. Plant Physiol 169:338–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun XC, Gao YF, Li HR, Yang SZ, Liu YS (2015) Over-expression of SlWRKY39 leads to enhanced resistance to multiple stress factors in tomato. J Plant Biol 58:52–60

    Article  CAS  Google Scholar 

  • Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Beemster GT, Sandberg G, Bhalerao R, Ljung K, Bennett MJ (2007) Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19:2186–2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaseva II, Qudeimat E, Potuschak T, Du Y, Genschik P, Vandenbussche F, Van Der Straeten D (2018) The plant hormone ethylene restricts Arabidopsis growth via the epidermis. Proc Natl Acad Sci 17:E4130–E4139

    Article  CAS  Google Scholar 

  • Wilmoth JC, Wang S, Tiwari SB, Joshi AD, Hagen G, Guilfoyle TJ, Alonso JM, Ecker JR, Reed JW (2005) NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant J 43:118–130

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Zhang ZL, Zou X, Huang J, Ruas P, Thompson D, Shen QJ (2005) Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol 137:176–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zentgraf U, Thomas L, Ying M (2010) The complex regulation of WRKY53 during leaf senescence of Arabidopsis thaliana. Eur J Cell Biol 89:133–137

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Chen L, Yu D (2018) Transcription factor WRKY75 interacts with DELLA proteins to affect flowering. Plant Physiol 176:790–803

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Qamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48:592–605

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to the Council of Scientific and Industrial Research (CSIR), India for financial support to Deepika Singh and Pratima Debnath. The work was supported by CSIR, India under the project BSC0204 and MLP26. Integral Manuscript Communication No: IU/R&D/2019-MCN000678 and NBRI Publication No. CSIR-NBRI_MS/2020/02/06.

Funding

This study was funded by CSIR, India under the Projects BSC0204 and MLP26. NBRI Publication No. CSIR-NBRI_MS/2020/02/06.

Author information

Authors and Affiliations

Authors

Contributions

VAS and APs conceptualized and designed the experiments, DS and PD carried out the experiments. VAS, APS, Roohi analysed the data. APS and VAS wrote the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Vidhu A. Sane.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Debnath, P., Roohi et al. Expression of the tomato WRKY gene, SlWRKY23, alters root sensitivity to ethylene, auxin and JA and affects aerial architecture in transgenic Arabidopsis. Physiol Mol Biol Plants 26, 1187–1199 (2020). https://doi.org/10.1007/s12298-020-00820-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-020-00820-3

Keywords

Navigation