Skip to main content
Log in

Metabolomics Analysis Reveals the Salt-Tolerant Mechanism in Glycine soja

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Salinity is one of the major environmental constraints limiting crop plant yields around the world. Therefore, understanding the salt-tolerant mechanism and improving crop salt tolerance are two of the most effective ways of sustaining crop production worldwide. The differences in metabolite profiles were analyzed between common wild soybean and salt-tolerant wild soybean in response to neutral-salt stress and alkali-salt stress to elucidate the salt-tolerant mechanism. The results showed salt-tolerant wild soybean grew better than common wild soybean under both treatments. Differential metabolites profiling showed that the levels of some carbohydrates and fatty acids were lower in common wild soybean than in salt-tolerant wild soybean under salt stress. These metabolites included lactose, ribose, lauric acid, palmitic acid, stearic acid, and linolenic acid. Amino acid accumulation was observed in the two wild soybeans under alkali-salt stress. These amino acids were valine, tyrosine, glutamic acid, leucine, and isoleucine. The content of most organic acids and proline increased in salt-tolerant wild soybean subjected to alkali-salt stress. These organic acids included mucic acid, glutaric acid, galactonic acid, and dehydroascorbic acid. The TCA cycle was enhanced in common wild soybean in response to both treatments, but was reduced in salt-tolerant wild soybean. This study demonstrated the salt-tolerant mechanism in common wild soybean may encourage the TCA cycle to generate more ATP. However salt-tolerant wild soybean may regulate amino acid and organic acid metabolism to generate more compatible solutes. These findings provide an important theoretical foundation for the protection, development, and utilization of wild soybean resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abraham E, Rigo G, Szekely G, Nagy R, Koncz C, Szabados L (2003) Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol 51(3):363–372

    Article  CAS  PubMed  Google Scholar 

  • Ali G, Srivastava PS, Iqbal M (1999) Proline accumulation, protein pattern and photosynthesis in regenerants grown under NaCl stress. Plant Biol 42(1):89–95

    Article  CAS  Google Scholar 

  • Allwood JW, Erban A, Koning SD, Dunn WB, Luedemann A, Lommen A, Kay L, Loscher R, Kopka J, Goodacre R (2009) Inter-laboratory reproducibility of fast gas chromatography-electron impact-time of flight mass spectrometry (GC-EI-TOF/MS) based plant metabolomics. Metabolomics 5(4):479–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arndt SK, Arampatsis C, Foetzki A, Li XY, Zeng FJ, Zhang XM (2004) Contrasting patterns of leaf solute accumulation and salt adaptation in four phreatophytic desert plants in a hyperarid desert with saline groundwater. J Arid Environ 59(2):259–270

    Article  Google Scholar 

  • Ashraf M (1994) Organic substances responsible for salt tolerance in Eruca sativa. Biol Plantarum 36(2):255–259

    Article  CAS  Google Scholar 

  • Ashraf M, Fatima H (1995) Responses of some salt tolerant and salt sensitive lines of safflower (Carthamus tinctorius L.) to salt stress. Acta Physiol Plant 17(1):61–71

    CAS  Google Scholar 

  • Ashraf M, Tufail M (2008) Variation in salinity tolerance in sunflower (Helianthus annuus L.). J Agron Crop Sci 174(5):351–362

    Article  Google Scholar 

  • Binzel ML, Hess FD, Bressan RA, Hasegawa PM (1988) Intracellular compartmentation of ions in salt adapted tobacco cells. Plant Physiol 86(2):607–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bocian A, Zwierzykowski Z, Rapacz M, Koczyk G, Ciesiołka D, Kosmala A (2015) Metabolite profiling during cold acclimation of Lolium perenne genotypes distinct in the level of frost tolerance. J Appl Genet 56(4):439–449

    Article  CAS  PubMed  Google Scholar 

  • DuanMu H, Wang Y, Bai X, Cheng S, Deyholos MK, Wong GKS, Li D, Zhu D, Li R, Yu Y, Cao L, Chen C, Zhu Y (2015) Wild soybean roots depend on specific transcription factors and oxidation reduction related genes in response to alkaline stress. Funct Integr Genomics 15(6):651–660

    Article  CAS  PubMed  Google Scholar 

  • Fan XC, Zhang YB, Liu CH, Pan X, Guo JN, Li M, Wang J (2007) Effects of NaCl stress on the contents of organic osmolytes and lipid peroxidation in grape leaves. J Fruit Sci 24(6):765–769

    CAS  Google Scholar 

  • Farag MA, Porze A, Wessjohann LA (2012) Comparative metabolite profiling and fingerprinting of medicinal licorice roots using a multiplex approach of GC–MS, LC–MS and 1D NMR techniques. Phytochemistry 76:60–72

    Article  CAS  PubMed  Google Scholar 

  • Fiehn O (2002) Metabolomics the link between genotypes and phenotypes. Plant Mol Biol 48(1–2):155–171

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Guo DL, Guo CH (2010) Role of trienoic fatty acids in higher plants stress responses. Mol Plant Breed 08(2):365–369

    CAS  Google Scholar 

  • Ge Y, Li Y, Lv DK, Bai X, Ji W, Cai H, Wang AX, Zhu YM (2011) Alkaline-stress response in Glycine soja leaf identifies specific transcription factors and ABA mediated signaling factors. Funct Integr Genomics 11(2):369–379

    Article  CAS  PubMed  Google Scholar 

  • Gorham J (1995) Mechanisms of salt tolerance in halophytes. In: Choukr-Allah R, Malcom CV, Hamdy A (eds) Halophytes and biosaline agriculture. Marcel Dekker, New York, p 400

    Google Scholar 

  • Gorham J, Hughes LL, Jones RGW (1981) Low molecular weight carbohydrates in some salt-stressed plants. Plant Physiol 53(1):27–33

    Article  CAS  Google Scholar 

  • Hu L, Zhang P, Jiang Y, Fu J (2014) Metabolomic analysis revealed differential adaptation to salinity and alkalinity stress in kentucky bluegrass (Poa pratensis). Plant Mol Biol Rep. doi:10.1007/s11105-014-0722-4

    Google Scholar 

  • Hurkman WJ, Rao HP, Tanaka CK (1991) Germin-like polypeptides increase in barley roots during salt stress. Plant Physiol 97(1):366–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M, Shahbaz S, Fiehn O (2009) FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 81(24):10038–10048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kingsbury RW, Epstein E, Peary RW (1984) Physiological responses to salinity in selected lines of wheat. Plant Physiol 74(2):417–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuroda Y, Tomooka N, Kaga A, Wanigadeva SMSW, Vaughan DA (2009) Genetic diversity of wild soybean (Glycine soja Sieb. et Zucc.) and Japanese cultivated soybeans [G. max (L.) Merr.] based on microsatellite (SSR) analysis and the selection of a core collection. Genet Resour Crop Evol 56(8):1045–1055

    Article  CAS  Google Scholar 

  • Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL, Li MW, He W, Qin N, Wang B, Li J, Jian M, Wang J, Shao G, Sun SS, Zhang G (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059

    Article  CAS  PubMed  Google Scholar 

  • Liu HQ, Guo SH, Shen YS, Li XM (2004) Study in antioxidatixe effect of β-sitosteroll. J Guangdong Coll Pharm 20(03):281–283

    CAS  Google Scholar 

  • Lu Y, Lam H, Pi E, Zhan Q, Tsai S, Wang C, Kwan Y, Ngai S (2013) Comparative metabolomics in Glycine max and Glycine soja under salt stress to reveal the phenotypes of their offspring. J Agr Food Chem 61(36):8711–8721

    Article  CAS  Google Scholar 

  • Ma H, Song L, Huang Z, Yang Y, Wang S, Wang Z, Tong J, Gu W, Ma H, Xiao L (2014) Comparative proteomic analysis reveals molecular mechanism of seedling roots of different salt tolerant soybean genotypes in responses to salinity stress. EuPA Open Proteomics 4:40–57

    Article  CAS  Google Scholar 

  • Nam MH, Bang E, Kwon TY, Kim Y, Kim EH, Cho K, Park WJ, Kim BG, Yoon IS (2015) Metabolite profiling of diverse rice germplasm and identification of conserved metabolic markers of rice roots in response to long-term mild salinity stress. Int J Mol Sci 16(9):21959–21974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson DE, Koukoumanos M, Bohnert HJ (1999) Myo-inositol-dependent sodium uptake in ice plant. Plant Physiol 119(1):165–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi X, Li MW, Xie M, Liu X, Ni M, Shao G, Song C, Kay-Yuen Yim A, Tao Y, Wong FL, Isobe S, Wong CF, Wong KS, Xu C, Li C, Wang Y, Guan R, Sun F, Fan G, Xiao Z, Zhou F, Phang TH, Liu X, Tong SW, Chan TF, Yiu SM, Tabata S, Wang J, Xu X, Lam HM (2014) Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nat Commun. doi:10.1038/ncomms5340

    Google Scholar 

  • Salama KHA, Mansour MMF (2015) Choline priming-induced plasma membrane lipid alterations contributed to improved wheat salt tolerance. Acta. Physiol Plant. doi:10.1007/s11738-015-1934-4

    Google Scholar 

  • Shi DC, Sheng YM (2005) Effect of various salt–alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors. Environ Exp Bot 54(1):8–21

    Article  CAS  Google Scholar 

  • Shi LX, Ma S, Fang Y, Xu J (2015) Crucial variations in growth and ion homeostasis of glycine gracilis seedlings under two types of salt stresses. J Soil Sci Plant Nut 15(4):1007–1023

    Google Scholar 

  • Stefanov M, Yotsova E, Rashkov G, Ivanova K, Markovska Y, Apostolova EL (2016) Effects of salinity on the photosynthetic apparatus of two Paulownia lines. Plant Physiol Biochem 101:54–59

    Article  CAS  PubMed  Google Scholar 

  • Tian XY, Liu YJ, Guo YC (2008) Effect of salt stress on Na+, K+, proline, soluble sugar and protein of NHC. Pratacult Sci 25(10):34–38

    Google Scholar 

  • Tuyen DD, Lal SK, Xu DH (2010) Identification of a major QTL allele from wild soybean (Glycine soja Sieb. & Zucc.) for increasing alkaline salt tolerance in soybean. Theor Appl Genet 121(2):229–236

    Article  CAS  PubMed  Google Scholar 

  • Vicente O, Boscaiu M, Naranjo MA, Estrelles E, Bellés JM, Soriano P (2004) Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). J Aria Environ 58(4):463–481

    Article  Google Scholar 

  • Wen Z, Ding Y, Zhao T, Gai J (2009) Genetic diversity and peculiarity of annual wild soybean (G. soja Sieb. et Zucc.) from various ecoregions in China. Theor Appl Genet 119(2):371–381

    Article  CAS  PubMed  Google Scholar 

  • Wu DZ, Cai SG, Chen MX, Ye LZ, Chen ZH, Zhang HT, Dai F, Wu FB, Zhang GP (2013) Tissue metabolic responses to salt stress in wild and cultivated barley. Plos One. doi:10.1371/journal.pone.0055431

    Google Scholar 

  • Xia J, Mandal R, Sinelnikov I, Broadhurst D, Wishart DS (2012) MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucl Acids Res 40:127–133

    Article  Google Scholar 

  • Xiao Q, Zheng HL, Chen Y, Huang WB, Zhu Z (2005) Effects of salinity on the growth and proline, soluble sugar and protein contents of Spartina alterniflora. Chin J Ecol 24(04):373–376

    Article  Google Scholar 

  • Xue Z, Zhao S, Gao H, Sun S (2014) The salt resistance of wild soybean (Glycine soja Sieb. et Zucc. ZYD 03262) under NaCl stress is mainly determined by Na+ distribution in the plant. Acta Physiol Plant 36(1):61–70

    Article  CAS  Google Scholar 

  • Yang J, Xu X (2003) Progress of research on accumulation of osmotic substance under salt-stress in plants. J Ningxia Agr Coll 04:86–89

    Google Scholar 

  • Yang CW, Chong JN, Kim CM, Li CY, Shi DC, Wang DL (2007) Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant Soil 294(1):263–276

    Article  CAS  Google Scholar 

  • Yang CW, Li CY, Shi DC, Wang DL (2008a) Comparison of the effects of salt-stress and alkali-stress on the photosynthetic production and energy storage of an alkali-resistant halophyte Chloris virgata. Photosynthetica 46(1):273–278

  • Yang CW, Shi DC, Wang DL (2008b) Comparative effects of salt stress and alkali stress on growth, osmotic adjustment and ionic balance of an alkali resistant halophyte Suaeda glauca (Bge). Plant Growth Regul 56(2):179–190

  • Yang CW, Wang P, Li CY, Shi DC, Wang DL (2008c) Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat. Photosynthetica 46(1):107–114

  • Yoshida Y, Marubodee R, Ogiso-Tanaka E, Iseki K, Isemura T, Takahashi Y, Muto C, Naito K, Kaga A, Okuno K, Ehara H, Tomooka N (2015) Salt tolerance in wild relatives of adzuki bean, Vigna angularis (Willd.) Ohwi et Ohashi. Genet Resour Crop Ev. doi:10.1007/s10722-015-0272-0

    Google Scholar 

  • Zhang ZY, Chen JB, Song JL, Cao YN, Ran XQ, Dang H (2014) Cloning and expression analysis of P5CS gene from wild soybean (Glycine soja) seedling under salt stress. J Plant Gene Resour 15(04):844–849

    CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6(2):66–71

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the support given by the National Natural Science Foundation of China (Grant No. 31270366).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian-xuan Shi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 523 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Ds., Zhang, J., Li, Mx. et al. Metabolomics Analysis Reveals the Salt-Tolerant Mechanism in Glycine soja . J Plant Growth Regul 36, 460–471 (2017). https://doi.org/10.1007/s00344-016-9654-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-016-9654-6

Keywords

Navigation