Skip to main content
Log in

Metabolite profiling during cold acclimation of Lolium perenne genotypes distinct in the level of frost tolerance

  • Plant Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Abiotic stresses, including low temperature, can significantly reduce plant yielding. The knowledge on the molecular basis of stress tolerance could help to improve its level in species of relatively high importance to agriculture. Unfortunately, the complex research performed so far mainly on model species and also, to some extent, on cereals does not fully cover the demands of other agricultural plants of temperate climate, including forage grasses. Two Lolium perenne (perennial ryegrass) genotypes with contrasting levels of frost tolerance, the high frost tolerant (HFT) and the low frost tolerant (LFT) genotypes, were selected for comparative metabolomic research. The work focused on the analysis of leaf metabolite accumulation before and after seven separate time points of cold acclimation. Gas chromatography–mass spectrometry (GC/MS) was used to identify amino acids (alanine, proline, glycine, glutamic and aspartic acid, serine, lysine and asparagine), carbohydrates (fructose, glucose, sucrose, raffinose and trehalose) and their derivatives (mannitol, sorbitol and inositol) accumulated in leaves in low temperature. The observed differences in the level of frost tolerance between the analysed genotypes could be partially due to the time point of cold acclimation at which the accumulation level of crucial metabolite started to increase. In the HFT genotype, earlier accumulation was observed for proline and asparagine. The increased amounts of alanine, glutamic and aspartic acids, and asparagine during cold acclimation could be involved in the regulation of photosynthesis intensity in L. perenne. Among the analysed carbohydrates, only raffinose revealed a significant association with the acclimation process in this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Ala:

Alanine

Asp:

Aspartic acid

Asn:

Asparagine

CA:

Cold acclimation

Fru:

Fructose

GC/MS:

Gas chromatography–mass spectrometry

Glu:

Glutamic acid

Gly:

Glycine

Glc:

Glucose

HFT:

High frost tolerant

Ino:

Inositol

LFT:

Low frost tolerant

Lys:

Lysine

Man:

Mannitol

PCA:

Principal component analysis

PPFD:

Photosynthetic photon flux density

Pro:

Proline

Raf:

Raffinose

Ser:

Serine

Sor:

Sorbitol

Suc:

Sucrose

Tre:

Trehalose

References

  • Amme S, Matros A, Schlesier B, Mock HP (2006) Proteome analysis of cold stress response in Arabidopsis thaliana using DIGE-technology. J Exp Bot 57:1537–1546

    Article  CAS  PubMed  Google Scholar 

  • Bocian A, Kosmala A, Rapacz M, Jurczyk B, Marczak Ł, Zwierzykowski Z (2011) Differences in leaf proteome response to cold acclimation between Lolium perenne plants with distinct levels of frost tolerance. J Plant Physiol 168:1271–1279

    Article  CAS  PubMed  Google Scholar 

  • Bown AW, Shelp BJ (1989) The metabolism and physiological roles of 4-aminobutyric acid. Biochem Life Sci Adv 8:21–25

    Google Scholar 

  • Carpenter JF, Crowe JH, Arakawa T (1990) Comparison of solute-induced protein stabilization in aqueous solution and in the frozen and dried states. J Dairy Sci 73:3627–3636

    Article  CAS  Google Scholar 

  • Cho CW, Lee HJ, Chung E, Kim KM, Heo JE, Kim JI, Chung J, Ma Y, Fukui K, Lee DW, Kim DH, Chung YS, Lee JH (2007) Molecular characterization of the soybean L-asparaginase gene induced by low temperature stress. Mol Cells 23:280–286

    CAS  PubMed  Google Scholar 

  • Chu TM, Aspinall D, Paleg LG (1974) Stress metabolism. VI. Temperature stress and the accumulation of proline in barley and radish. Aust J Plant Physiol 1:87–97

    Article  CAS  Google Scholar 

  • Dionne J, Castonguay Y, Nadeau P, Desjardins Y (2001) Amino acid and protein changes during cold acclimation of green-type annual bluegrass (Poa annua L.) ecotypes. Crop Sci 41:1862–1870

    Article  CAS  Google Scholar 

  • Dörffling K, Schulenburg S, Lesselich G, Dörffling H (1990) Abscisic acid and proline levels in cold hardened winter wheat leaves in relation to variety-specific differences in freezing resistance. J Agron Crop Sci 165:230–239

    Article  Google Scholar 

  • Dörffling K, Dörffling H, Lesselich G (1993) In vitro-selection and regeneration of hydroxyproline-resistant lines of winter wheat with increased proline content and increased frost tolerance. J Plant Physiol 142:222–225

    Article  Google Scholar 

  • Galiba G, Vanková R, Tari I, Bánfalvi Z, Poór P, Dobrev P, Boldizsár À, Vágújfalvi A, Kocsy G (2013) Hormones, NO, antioxidants and metabolites as key players in plant cold acclimation. In: Imai R, Yoshida M, Matsumoto N (eds) Plant and microbe adaptations to cold in a changing world. Springer, New York, pp 73–87. doi:10.1007/978-1-4614-8253-6_7

    Chapter  Google Scholar 

  • Gray GR, Heath D (2005) A global reorganization of the metabolome in Arabidopsis during cold acclimation is revealed by metabolic fingerprinting. Physiol Plant 124:236–248

    Article  CAS  Google Scholar 

  • Guy C, Kaplan F, Kopka J, Selbig J, Hincha DK (2008) Metabolomics of temperature stress. Physiol Plant 132:220–235

    CAS  PubMed  Google Scholar 

  • Hannah MA, Wiese D, Freund S, Fiehn O, Heyer AG, Hincha DK (2006) Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiol 142:98–112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hanson AD, Hitz WD (1982) Metabolic responses of mesophytes to plant water deficits. Annu Rev Plant Physiol 33:163–203

    Article  CAS  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  • Hisano H, Kanazawa A, Kawakami A, Yoshida M, Shimamoto Y, Yamada T (2004) Transgenic perennial ryegrass plants expressing wheat fructosyltransferase genes accumulate increased amounts of fructan and acquire increased tolerance on a cellular level to freezing. Plant Sci 167:861–868

    Article  CAS  Google Scholar 

  • Hoffman L, DaCosta M, Ebdon JS, Watkins E (2010) Physiological changes during cold acclimation of perennial ryegrass accessions differing in freeze tolerance. Crop Sci 50:1037–1047

    Article  CAS  Google Scholar 

  • Hotelling H (1933a) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:417–441

    Article  Google Scholar 

  • Hotelling H (1933b) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:498–520

    Article  Google Scholar 

  • Hurry VM, Strand A, Tobiaeson M, Gardeström P, Öquist G (1995) Cold hardening of spring and winter wheat and rape results in differential effects on growth, carbon metabolism, and carbohydrate content. Plant Physiol 109:697–706

    PubMed Central  CAS  PubMed  Google Scholar 

  • Juhász Z, Boldizsár Á, Nagy T, Kocsy G, Marincs F, Galiba G, Bánfalvi Z (2015) Pleiotropic effect of chromosome 5A and the mvp mutation on the metabolite profile during cold acclimation and the vegetative/generative transition in wheat. BMC Plant Biol 15:57. doi:10.1186/s12870-014-0363-7

    Article  PubMed Central  PubMed  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaplan F, Kopka J, Sung DY, Zhao W, Popp M, Porat R, Guy CL (2007) Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J 50:967–981

    Article  CAS  PubMed  Google Scholar 

  • Klotke J, Kopka J, Gatzke N, Heyer AG (2004) Impact of soluble sugar concentrations on the acquisition of freezing tolerance in accessions of Arabidopsis thaliana with contrasting cold adaptation—evidence for a role of raffinose in cold acclimation. Plant Cell Environ 27:1395–1404

    Article  CAS  Google Scholar 

  • Knaupp M, Mishra KB, Nedbal L, Heyer AG (2011) Evidence for a role of raffinose in stabilizing photosystem II during freeze–thaw cycles. Planta 234:477–486

    Article  CAS  PubMed  Google Scholar 

  • Kocsy G, Szalai G, Vágújfalvi A, Stéhli L, Orosz G, Galiba G (2000) Genetic study of glutathione accumulation during cold hardening in wheat. Planta 210:295–301

    Article  CAS  PubMed  Google Scholar 

  • Kocsy G, Athmer B, Perovic D, Himmelbach A, Szucs A, Vashegyi I, Schweizer P, Galiba G, Stein N (2010) Regulation of gene expression by chromosome 5A during cold hardening in wheat. Mol Genet Genomics 283:351–363

    Article  CAS  PubMed  Google Scholar 

  • Konstantinova T, Parvanova D, Atanassov A, Djilianov D (2002) Freezing tolerant tobacco, transformed to accumulate osmoprotectants. Plant Sci 163:157–164

    Article  CAS  Google Scholar 

  • Kosmala A, Zwierzykowska E, Zwierzykowski Z (2006) Chromosome pairing in triploid intergeneric hybrids of Festuca pratensis with Lolium multiflorum, revealed by GISH. J Appl Genet 47:215–220

    Article  PubMed  Google Scholar 

  • Kosmala A, Bocian A, Rapacz M, Jurczyk B, Zwierzykowski Z (2009) Identification of leaf proteins differentially accumulated during cold acclimation between Festuca pratensis plants with distinct levels of frost tolerance. J Exp Bot 60:3595–3609

    Article  CAS  PubMed  Google Scholar 

  • Kosmala A, Perlikowski D, Pawłowicz I, Rapacz M (2012) Changes in the chloroplast proteome following water deficit and subsequent watering in a high- and a low-drought-tolerant genotype of Festuca arundinacea. J Exp Bot 63:6161–6172

    Article  CAS  PubMed  Google Scholar 

  • Kovács Z, Simon-Sarkadi L, Sovány C, Kirsch K, Galiba G, Kocsy G (2011) Differential effects of cold acclimation and abscisic acid on free amino acid composition in wheat. Plant Sci 180:61–68

    Article  PubMed  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses. In: Chilling, freezing, and high temperature stresses, vol 1, 2nd edn. Academic Press, New York, pp 166–223

    Google Scholar 

  • Livingston DP III (1991) Nonstructural carbohydrate accumulation in winter oat crowns before and during cold hardening. Crop Sci 31:751–755

    Article  CAS  Google Scholar 

  • Mazzucotelli E, Tartari A, Cattivelli L, Forlani G (2006) Metabolism of gamma-aminobutyric acid during cold acclimation and freezing and its relationship to frost tolerance in barley and wheat. J Exp Bot 57:3755–3766

    Article  CAS  PubMed  Google Scholar 

  • Murata T (1969) Physiological and biochemical studies of chilling injury in bananas. Physiol Plant 22:401–411

    Article  CAS  Google Scholar 

  • Murelli C, Rizza F, Albini FM, Dulio A, Terzi V, Cattivelli L (1995) Metabolic changes associated with cold-acclimation in contrasting cultivars of barley. Physiol Plant 94:87–93

    Article  CAS  Google Scholar 

  • Nägele T, Heyer AG (2013) Approximating subcellular organisation of carbohydrate metabolism during cold acclimation in different natural accessions of Arabidopsis thaliana. New Phytol 198:777–787

    Article  PubMed  Google Scholar 

  • Naidu BP, Paleg LG, Aspinall D, Jennings AC, Jones GP (1991) Amino acid and glycine betaine accumulation in cold-stressed wheat seedlings. Phytochemistry 30:407–409

    Article  CAS  Google Scholar 

  • Parvanova D, Ivanov S, Konstantinova T, Karanov E, Atanassov A, Tsvetkov T, Alexieva V, Djilianov D (2004) Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiol Biochem 42:57–63

    Article  CAS  PubMed  Google Scholar 

  • Pawłowicz I, Kosmala A, Rapacz M (2012) Expression pattern of the psbO gene and its involvement in acclimation of the photosynthetic apparatus during abiotic stresses in Festuca arundinacea and F. pratensis. Acta Physiol Plant 34:1915–1924

    Article  Google Scholar 

  • Perlikowski D, Kosmala A, Rapacz M, Kościelniak J, Pawłowicz I, Zwierzykowski Z (2014) Influence of short-term drought conditions and subsequent re-watering on the physiology and proteome of Lolium multiflorum/Festuca arundinacea introgression forms, with contrasting levels of tolerance to long-term drought. Plant Biol (Stuttg) 16:385–394

    Article  CAS  Google Scholar 

  • Pollock CJ, Eagles CF, Sims IM (1988) Effect of photoperiod and irradiance changes upon development of freezing tolerance and accumulation of soluble carbohydrate in seedlings of Lolium perenne grown at 2 °C. Ann Bot 62:95–100

    Google Scholar 

  • Rapacz M (1999) Frost resistance and cold acclimation abilities of spring-type oilseed rape. Plant Sci 147:55–64

    Article  CAS  Google Scholar 

  • Rapacz M, Gąsior D, Zwierzykowski Z, Leśniewska-Bocianowska A, Humphreys MW, Gay AP (2004) Changes in cold tolerance and the mechanisms of acclimation of photosystem II to cold hardening generated by anther culture of Festuca pratensis × Lolium multiflorum cultivars. New Phytol 162:105–114

    Article  CAS  Google Scholar 

  • Rapacz M, Gąsior D, Kościelniak J, Kosmala A, Zwierzykowski Z, Humphreys MW (2007) The role of photosynthetic apparatus in cold acclimation of Lolium multiflorum. Characteristics of novel genotypes low-sensitive to PSII over-reduction. Acta Physiol Plant 29:309–316

    Article  CAS  Google Scholar 

  • Rohloff J, Kopka J, Erban A, Winge P, Wilson RC, Bones AM, Davik J, Randall SK, Alsheikh MK (2012) Metabolite profiling reveals novel multi-level cold responses in the diploid model Fragaria vesca (woodland strawberry). Phytochemistry 77:99–109

    Article  CAS  PubMed  Google Scholar 

  • Sandve SR, Kosmala A, Rudi H, Fjellheim S, Rapacz M, Yamada T, Rognli OA (2011) Molecular mechanisms underlying frost tolerance in perennial grasses adapted to cold climates. Plant Sci 180:69–77

    Article  CAS  PubMed  Google Scholar 

  • Savitch LV, Harney T, Huner NPA (2000) Sucrose metabolism in spring and winter wheat in response to high irradiance, cold stress and cold acclimation. Physiol Plant 108:270–278

    Article  CAS  Google Scholar 

  • Savitch LV, Leonardos ED, Krol M, Jansson S, Grodzinski B, Huner NPA, Öquist G (2002) Two different strategies for light utilization in photosynthesis in relation to growth and cold acclimation. Plant Cell Environ 25:761–771

    Article  CAS  Google Scholar 

  • Shen B, Jensen RG, Bohnert HJ (1997) Mannitol protects against oxidation by hydroxyl radicals. Plant Physiol 115:527–532

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060

    Article  CAS  Google Scholar 

  • Strand A, Hurry V, Henkes S, Huner N, Gustafsson P, Gardeström P, Stitt M (1999) Acclimation of Arabidopsis leaves developing at low temperatures. Increasing cytoplasmic volume accompanies increased activities of enzymes in the Calvin cycle and in the sucrose-biosynthesis pathway. Plant Physiol 119:1387–1398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tamura K, Sanada Y, Tase K, Kawakami A, Yoshida M, Yamada T (2014) Comparative study of transgenic Brachypodium distachyon expressing sucrose:fructan 6-fructosyltransferases from wheat and timothy grass with different enzymatic properties. Planta 239:783–792

    Article  CAS  PubMed  Google Scholar 

  • Thomas H, James AR (1993) Freezing tolerance and solute changes in contrasting genotypes of Lolium perenne L. acclimated to cold and drought. Ann Bot 72:249–254

    Article  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol 50:571–599

    Article  CAS  Google Scholar 

  • Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211

    Article  CAS  PubMed  Google Scholar 

  • Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Winfield MO, Lu C, Wilson ID, Coghill JA, Edwards KJ (2010) Plant responses to cold: transcriptome analysis of wheat. Plant Biotechnol J 8:749–771

    Article  CAS  PubMed  Google Scholar 

  • Wong HK, Chan HK, Coruzzi GM, Lam HM (2004) Correlation of ASN2 gene expression with ammonium metabolism in Arabidopsis. Plant Physiol 134:332–338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Bot 208:2819–2830

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The selection of L. perenne genotypes applied in the research was performed in the framework of the project of The National Centre for Research and Development (no. PBZMNiSW-2/3/2006/21). We thank prof. Maciej Stobiecki from the Institute of Bioorganic Chemistry, Polish Academy of Sciences (Poznan, Poland) for the revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadiusz Kosmala.

Additional information

Communicated by: Andrzej Górny

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bocian, A., Zwierzykowski, Z., Rapacz, M. et al. Metabolite profiling during cold acclimation of Lolium perenne genotypes distinct in the level of frost tolerance. J Appl Genetics 56, 439–449 (2015). https://doi.org/10.1007/s13353-015-0293-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-015-0293-6

Keywords

Navigation