Skip to main content
Log in

Defensive Responses in Groundnut Against Chewing and Sap-Sucking Insects

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Induced resistance is one of the important components of host plant resistance to insects. We studied the induced defensive responses in groundnut genotypes with different levels of resistance to the leaf defoliator Helicoverpa armigera and the sap-sucking insect Aphis craccivora to gain an understanding of the induced resistance to insects and its implications for pest management. The activity of the defensive enzymes (peroxidase, polyphenol oxidase, phenylalanine ammonia lyase, superoxide dismutase, ascorbate peroxidase, and catalase) and the amounts of total phenols, hydrogen peroxide, malondialdehyde, and proteins were recorded at 6 days after infestation. Induction of enzyme activities and the amounts of secondary metabolites were greater in the insect-resistant genotypes ICGV 86699, ICGV 86031, ICG 2271, and ICG 1697 infested with H. armigera and A. craccivora than in the susceptible check JL 24. The resistant genotypes suffered lower insect damage and resulted in lower Helicoverpa larval survival and weights than those larvae fed on the susceptible check JL 24. The number of aphids was significantly lower on insect-resistant genotypes than on the susceptible check JL 24. The results suggested that groundnut plants respond to infestation by H. armigera and A. craccivora in a similar way; however, the degree of the response differed across the genotypes and insects, and this defense response is attributed to various defensive enzymes and secondary metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahmed AAI, Abd El-Salam AME, El-Hawary FMA (2007) Persistence and biological activity of mint and garlic oils against the cowpea aphid, Aphis craccivora Koch. (Homoptera: Aphididae). Egypt J Biol Pest Control 17(1):7–11

    Google Scholar 

  • Arimura G, Matsui K, Takabayashi J (2009) Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions. Plant Cell Physiol 50(5):911–923

    Article  PubMed  CAS  Google Scholar 

  • Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibition. Elsevier, Amsterdam, pp 227–287

    Google Scholar 

  • Barbehenn RV, Cheek S, Gasperut A, Lister E, Maben R (2005) Phenolic compounds in red oak and sugar maple leaves have prooxidant activities in the midguts of Malacosoma disstria and Orgyia leucostigma caterpillars. J Chem Ecol 31:969–988

    Article  PubMed  CAS  Google Scholar 

  • Barbehenn R, Dukatz C, Holt C, Reese A, Martiskainen O, Salminen JP, Yip L, Tran L, Constable CP (2010) Feeding on poplar leaves by caterpillars potentiates foliar peroxidase action in their guts and increases plant resistance. Oecologia 164:993–1004

    Article  PubMed  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  • Bernards MA, Bastrup-Spohr L (2008) Phenylpropanoid metabolism induced by wounding and insect herbivory. In: Schaller A (ed) Induced plant resistance to herbivory. Springer, Berlin, pp 189–211

    Chapter  Google Scholar 

  • Bhonwong A, Stout MJ, Attajarusit J, Tantasawat P (2009) Defensive role of tomato polyphenol oxidase against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua). J Chem Ecol 35:28–38

    Article  PubMed  CAS  Google Scholar 

  • Bruinsma M, Posthumus MA, Mumm R, Mueller MJ, van Loon JJA, Dicke M (2009) Jasmonic acid-3 induced volatiles of Brassica oleracea attracts parasitoids: Effects of time and dose, and comparison with induction by herbivores. J Exp Bot 60:2575–2587

    Article  PubMed  CAS  Google Scholar 

  • Campos-Vargas R, Saltveit ME (2002) Involvement of putative chemical wound signals in the induction of phenolic metabolism in wounded lettuce. Physiol Plant 114:73–84

    Article  PubMed  CAS  Google Scholar 

  • Carmak I, Horst JH (1991) Effects of aluminum on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468

    Article  Google Scholar 

  • Chapman AD (2006) Numbers of living species in Australia and the World. Australian Biological Resources Study, Canberra, ISBN 978-0-642-56850-2

  • Chen Z, Silva H, Klessig DF (1993) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262:1883–1886

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Ni X, Buntin GD (2009) Physiological, nutritional and biochemical bases of corn resistance to foliage-feeding fall armyworm. J Chem Ecol 35:297–306

    Article  PubMed  Google Scholar 

  • Directorate of Groundnut Research (DGR) (2011) Kharif groundnut workshop, Maharana Pratap University of Agriculture and Technology, Udaipur, India, 22–24 April 2011, Annual report 2010, pp i–viii

  • Felton GW, Bi JL, Summers CB, Mueller AJ, Duffey SS (1994) Potential role of lipoxygenases in defense against insect herbivory. J Chem Ecol 20:651–666

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization (FAO) (2007) FAOSTAT database. http://www/FAO.ORG. Accessed on 7 Jan 2012

  • Grayer RJ, Kimmins FM, Padgham DE, Harborne JB, Ranga Rao DV (1992) Condensed tannin levels and resistance in groundnuts Arachis hypogoea (L.) against Aphis craccivora (Koch). Phytochemstry 31:3795–3799

    Article  CAS  Google Scholar 

  • Gulsen O, Eickhoff T, Heng-Moss T, Shearman R, Baxendale F, Sarath G, Lee D (2010) Characterization of peroxidase changes in resistant and susceptible warm-season turf grasses challenged by Blissus occiduus. Arthropod Plant Interact 4:45–55

    Article  Google Scholar 

  • Han Y, Wang Y, Bi JL, Yang XQ, Huang Y, Zhao X, Hu Y, Cai QN (2009) Constitutive and induced resistance in aphid-resistant and aphid-susceptible cultivars of wheat. J Chem Ecol 35:176–182

    Article  PubMed  CAS  Google Scholar 

  • He J, Chen F, Chen S, Lv G, Deng Y, Fang Z, Guan Z, He C (2011) Chrysanthemum leaf epidermal surface morphology and antioxidant and defense enzyme activity in response to aphid infestation. J Plant Physiol 168(7):687–693

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand D, Hymowitz T (1983) Lipoxygenase activities in developing and germinating soybean seeds with and without lipoxygenase-1. Bot Gaz 144:212–216

    Article  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to herbivores. Annu Rev Plant Biol 59:41–66

    Article  PubMed  CAS  Google Scholar 

  • Huang W, Zhikuan J, Qingfang H (2007) Effects of herbivore stress by Aphis medicaginis Koch on the malondialdehyde contents and activities of protective enzymes in different alfalfa varieties. Acta Ecol Sinica 27(6):2177–2183

    Article  CAS  Google Scholar 

  • Karban R (2011) The ecology and evolution of induced resistance against herbivores. Funct Ecol 25:339–347

    Article  Google Scholar 

  • Khattab H, Khattab M (2005) Responses of Eucalypt trees to the insect feeding (gall-forming psyllid). Int J Agric Biol 7(6):979–984

    Google Scholar 

  • Lowery OH, Rosebrough NI, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Maffei ME, Mithofer A, Boland W (2007) Insects feeding on plants: rapid signals and responses preceding the induction of phytochemical release. Phytochemistry 68:2946–2959

    Article  PubMed  CAS  Google Scholar 

  • Mahanil S, Attajarusit J, Stout MJ, Thipyapong P (2008) Overexpression of tomato polyphenol oxidase increases resistance to common cutworm. Plant Sci 174:456–466

    Article  CAS  Google Scholar 

  • Mayer AM, Harel E (1979) Polyphenol oxidases in plant. Phytochemistry 18:193–215

    Article  CAS  Google Scholar 

  • Minja EM, van der Merwe PJA, Kimmins FM, Subrahmanyam P (1999) Screening groundnut breeding lines for resistance to aphids, Aphis craccivora Koch. Int Arachis Newsl 19:21–23

    Google Scholar 

  • Moran PJ, Cheng YF, Cassell JL, Thompson GA (2002) Gene expression profiling of Arabidopsis thaliana in compatible plant-aphid interactions. Arch Insect Biochem Physiol 51:182–203

    Article  PubMed  CAS  Google Scholar 

  • Ni X, Quisenberry SS, Heng-Moss T, Markwell J, Sarath G, Klucas R, Baxendale F (2001) Oxidative responses of resistant and susceptible cereal leaves to symptomatic and non-symptomatic cereal aphid (Hemiptera: Aphididae) feeding. J Econ Entomol 94:743–751

    Article  PubMed  CAS  Google Scholar 

  • Noreen Z, Ashraf M (2009) Change in antioxidant enzymes and some key metabolites in some genetically diverse cultivars of radish (Raphanus sativus L.). Environ Exp Bot 67:395–402

    Article  CAS  Google Scholar 

  • Oerke EC (2006) Crop losses due to pests. J Agr Sci 144:31–43

    Google Scholar 

  • Padgham DE, Kimmins FM, Ranga Rao GV (1990) Resistance in groundnut (Arachis hypogaea L.) to Aphis craccivora (Koch). Ann Appl Biol 117:285–294

    Article  Google Scholar 

  • Rayapuram C, Baldwin IT (2007) Increased SA in NPR1-silenced plants antagonizes JA and JA-41 dependent direct and indirect defenses in herbivore-attacked Nicotiana attenuata in nature. Plant J 52:700–715

    Article  PubMed  CAS  Google Scholar 

  • Raychaudhuri S, Deng XW (2000) The role of superoxide dismutase in combating stress in higher plants. Bot Rev 66:89–98

    Article  Google Scholar 

  • Robert EB (1971) Method for estimation of tannin in grain sorghum. Agron J 63:511

    Article  Google Scholar 

  • Sethi A, McAuslane HJ, Rathinasabapathi B, Nuessly GS, Nagata RT (2009) Enzyme induction as a possible mechanism for latex-mediated insect resistance in romaine lettuce. J Chem Ecol 35:190–200

    Article  PubMed  CAS  Google Scholar 

  • Shannon LM, Kay E, Lew JY (1966) Peroxidase isozymes from horse radish roots. Isolation and physical properties. J Biol Chem 241:2166–2172

    PubMed  CAS  Google Scholar 

  • Sharma HC (2005) Heliothis/Helicoverpa Management: Emerging Trends and Strategies for Future Research. Oxford and IBH Publishing Co, New Delhi, p 469

  • Sharma HC, Pampathy G, Dwivedi SL, Reddy LJ (2003) Mechanism and diversity of resistance to insect pests in wild relatives of groundnut. J Econ Entomol 96(6):1886–1897

    Article  PubMed  CAS  Google Scholar 

  • Sharma HC, Pampathy G, Dhillon MK, Ridsdill-Smith JT (2005) Detached leaf assay to screen for host plant resistance to Helicoverpa armigera. J Econ Entomol 98(2):568–576

    Article  PubMed  Google Scholar 

  • Sharma HC, Sujana G, Rao DM (2009) Morphological and chemical components of resistance to pod borer Helicoverpa armigera in wild relatives of pigeonpea. Arthropod Plant Interact 3(3):151–161

    Article  Google Scholar 

  • Smith CM, Clement SL (2012) Molecular bases of plant resistance to arthropods. Annu Rev Entomol 57:309–328

    Article  PubMed  CAS  Google Scholar 

  • Tjallingi W (2006) Salivary secretions by aphids interacting with proteins of phloem wound responses. J Exp Bot 57:739–745

    Article  Google Scholar 

  • Torres MA (2010) ROS in biotic interactions. Physiol Plant 138:414–429

    Article  PubMed  CAS  Google Scholar 

  • Usha Rani P, Jyothsna Y (2010) Biochemical and enzymatic changes in rice as a mechanism of defense. Acta Physiol Plant 32:695–701

    Article  Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    PubMed  CAS  Google Scholar 

  • War AR, Paulraj MG, War MY, Ignacimuthu S (2011a) Jasmonic acid-mediated induced resistance in groundnut (Arachis hypogaea L.) against Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). J Plant Growth Regul 30:512–523

    Article  CAS  Google Scholar 

  • War AR, Paulraj MG, War MY, Ignacimuthu S (2011b) Herbivore- and elicitor-induced resistance in groundnut to Asian armyworm, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). Plant Signal Behav 6(11):1769–1777

    Article  PubMed  CAS  Google Scholar 

  • War AR, Paulraj MG, War MY, Ignacimuthu S (2012) Herbivore induced resistance in different groundnut germplasm lines to Asian armyworm, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). Acta Physiol Plant 34:343–352

    Article  CAS  Google Scholar 

  • Wu J, Baldwin IT (2010) New insights into plant responses to attack from insect herbivores. Annu Rev Genet 44:1–24

    Article  PubMed  CAS  Google Scholar 

  • Zhang SZ, Hau BZ, Zhang F (2008) Induction of the activities of antioxidative enzymes and the levels of malondialdehyde in cucumber seedlings as a consequence of Bemisia tabaci (Hemiptera: Aleyrodidae) infestation. Arthropod Plant Interact 2:209–213

    Article  Google Scholar 

  • Zhao LY, Chen JL, Cheng DF, Sun JR, Liu Y, Tian Z (2009) Biochemical and molecular characterizations of Sitobion avenae-induced wheat defense responses. Crop Prot 28:435–442

    Article  CAS  Google Scholar 

  • Zhu-Salzman K, Luthe DS, Felton GW (2008) Arthropod-induced proteins: broad spectrum defenses against multiple herbivores. Plant Physiol 146:852–858

    Article  PubMed  CAS  Google Scholar 

  • Zieslin N, Ben-Zaken R (1993) Peroxidase activity and presence of phenolic substances in peduncles of rose flowers. Plant Physiol Biochem 31:333–339

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Chand Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

War, A.R., Paulraj, M.G., Ignacimuthu, S. et al. Defensive Responses in Groundnut Against Chewing and Sap-Sucking Insects. J Plant Growth Regul 32, 259–272 (2013). https://doi.org/10.1007/s00344-012-9294-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-012-9294-4

Keywords

Navigation