Skip to main content
Log in

Defensive Role of Tomato Polyphenol Oxidases against Cotton Bollworm (Helicoverpa armigera) and Beet Armyworm (Spodoptera exigua)

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Tomato (Solanum lycopersicum) polyphenol oxidases (PPOs), enzymes that oxidize phenolics to quinones, have been implicated in plant resistance to insects. The role of PPO in resistance to cotton bollworm [Helicoverpa armigera (Hübner)] and beet armyworm [Spodoptera exigua (Hübner)] (Lepidoptera: Noctuidae) was evaluated. Consumption, weight gains, and mortality of larvae feeding on foliage of transgenic tomato lines overexpressing PPO (OP lines) and of larvae feeding on foliage of transgenic tomato lines with suppressed PPO (SP lines) were compared with consumption, weight gains, and mortality of larvae feeding on non-transformed (NT) plants. Increases in foliage consumption and weight gains were observed for cotton bollworms feeding on leaves of SP plants compared to NT and OP plants. PPO activity was negatively correlated with both weight gains and foliar consumption of cotton bollworm, substantiating the defensive role of PPO against this insect. Similarly, beet armyworm consumed less foliage (both young and old leaves) from OP plants than SP plants. Larvae feeding on OP leaves generally exhibited lower weight gains than those feeding on SP leaves. These results indicate that tomato PPO plays a role in resistance to both cotton bollworm and beet armyworm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akhurst, R., James, B., and Bird, L. 2006. Resistance to INGARD® cotton by the cotton bollworm, Helicoverpa armigera. Cotton Catchment Communities CRC, CSIRO, Australia <http://www.mv.pi.csiro.au/Publicat/conf/coconf00/AREAWIDE/25/25.htm>.

  • Banga, S. S., Kaur, K., Ahuja, K. L., and Banga, S. K. 2004. Introgression and biochemical manifestation of the gene(s) for white rust resistance in Indian mustard (Brassica juncea (L.) Coss.). <http://www.cropscience.org.au/icsc2004/poster/3/7/3/296_banga.htm>.

  • Barbehenn, R. V., Jones, C. P., Yip, L., Tran, L., and Constabel, C. P. 2007. Limited impact of elevated levels of polyphenol oxidase on tree-feeding caterpillars: assessing individual plant defenses with transgenic poplar. Oecologia 154:129–140.

    Article  PubMed  Google Scholar 

  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Article  PubMed  CAS  Google Scholar 

  • Campos, A. D., Ferreira, A. G., Vozarí Hampe, M. M., Antunes, I. F., Brancão, N., da Silveira, E. P., Osório, V. A., and Augustin, E. 2004. Peroxidase and polyphenol oxidase activity in bean anthracnose resistance. Pesq. Agropec. Bras., Brasilia. 39:637–643.

    Google Scholar 

  • Castañera, P., Steffens, J. C., and Tingey, W. M. 1996. Biological performance of Colorado potato beetle larvae on potato genotypes with differing levels of polyphenol oxidase. J. Chem. Ecol. 22:91–101.

    Article  Google Scholar 

  • Center for integrated Pest Management. 1982. Insects and Related Pests of Field Crops. North Carolina Cooperative Extension Service AG -271, North Carolina State University. <http://www.ipm.ncsu.edu./soybeans/insects/insect_pests_soybean.html>.

  • Chamnongpol, S., Willekens, H., Moeder, W., Langebartels, C., Sandermann, H. Jr., Montagu, M. V., Inzé, D., and Camp, W. V. 1998. Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proc. Natl. Acad. Sci. U.S.A. 95:5818–5823.

    Article  PubMed  CAS  Google Scholar 

  • Cho, M.-H., Moinuddin, S. G. A., Helms, G. L., Hishiyama, S., Eichinger, D., Davin, L. B., and Lewis, N. G. 2003. (+)-Larreatricin hydroxylase, an enantio-specific polyphenol oxidase from the creosote bush (Larrea tridentata). Proc. Natl. Acad. Sci. U.S.A. 100:10641–10646.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, W. C., Jia, L., and Goggin, F. L. 2004. Acquired and R-gene-mediated resistance against the potato aphid in tomato. J. Chem. Ecol. 30:2527–2542.

    Article  PubMed  CAS  Google Scholar 

  • Farrar, R. R. Jr., Barbour, J. D., and Kennedy, G. G. 1989. Quantifying food consumption and growth in insects. Ann. Entomol. Soc. Am. 82:593–598.

    Google Scholar 

  • Felton, G. W., Donato, K., Del Vecchio, R. J., and Duffey, S. S. 1989. Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores. J. Chem. Ecol. 15:2667–2694.

    Article  CAS  Google Scholar 

  • Friedman, M. 1997. Chemistry, biochemistry, and dietary role of potato polyphenols. J. Agric. Food Chem. 45:1523–1540.

    Article  Google Scholar 

  • Gandía-Herrero, F., Escribano, J., and García-Carmona, F. 2005. Characterization of the monophenolase activity of tyrosinase on betaxanthins: the tyramine-betaxanthin/dopamine-betaxanthin pair. Planta 222:307–318.

    Article  PubMed  Google Scholar 

  • Gleave, A. P. 1992. A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol. Biol. 20:1203–1207.

    Article  PubMed  CAS  Google Scholar 

  • Godfrey, L., and Kaffka, S. 2003. Reduced risk management of insect pests in sugar beets. Project Final Report, California Department of Pesticide Regulation. USA. 83 pp.

  • Goldman, M. H. S., Seurinck, J., Marins, M., Goldman, G. H., and Mariani, C. 1998. A tobacco flower-specific gene encodes a polyphenol oxidase. Plant Mol. Biol. 36:479–485.

    Article  PubMed  CAS  Google Scholar 

  • Grant, J. J., and Loake, G. J. 2000. Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol. 124:21–29.

    Article  PubMed  CAS  Google Scholar 

  • Guyot, S., Cheynier, V., Souquet, J. M., and Moutounet, M. 1995. Influence of pH on the enzymatic oxidation of (+)-catechin in model systems. J. Agric. Food Chem. 43:2458–2462.

    Article  CAS  Google Scholar 

  • Guyot, S., Vercauteren, J., and Cheynier, V. 1996. Structural determination of colourless and yellow dimers resulting from (+)-catechin coupling catalysed by grape polyphenol oxidase. Phytochemistry 42:1279–1288.

    Article  CAS  Google Scholar 

  • Haffman, R., Fuch, T., Benedict, J., Parker, R., Spark, S., Norman, J., Lesser, J., Knutson, A., Minzenmayer, R., and Frisbie, R. 1996. Management guidelines for the beet armyworm on cotton. Texas Agricultural Extension 12996. Texas A&M University. 10 pp.

  • Horton, D. R., and Redak, R. A. 1993. Further comments on analysis of covariance in insect dietary studies. Entomol. Exp. Appl. 69:263–275.

    Article  Google Scholar 

  • Hunt, M. D., Eannetta, N. T., Yu, H., Newman, S. M., and Steffens, J. C. 1993. cDNA cloning and expression of potato polyphenol oxidase. Plant Mol. Biol. 21:59–68.

    Article  PubMed  CAS  Google Scholar 

  • Kisha, J. S. A. 1981. Observations on the trapping of the whitefly Bemisia tabaci by glandular hairs on tomato leaves. Ann. Appl. Biol. 97:123–127.

    Article  Google Scholar 

  • Krishnamoorthy, V., Kumar, N., Angappan, K., and Soorianathasundaram, K. 2004. Evaluation of new banana hybrids against black leaf streak disease. Infomusa 13:25–27.

    Google Scholar 

  • Li, L., and Steffens, J. C. 2002. Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta 2:239–247.

    Article  Google Scholar 

  • Mahanil, S., Attajarusit, J., Stout, M. J., and Thipyapong, P. 2008. Overexpression of tomato polyphenol oxidase increases resistance to common cutworm. Plant Sci. 174:456–466.

    Article  CAS  Google Scholar 

  • Manjunath, T. M. 2004. Bt cotton in India: The technology wins as the controversy wanes. AgBioWorld 29th Dec. 2004. <http://www.monsanto.co.uk/news/ukshowlib.phtml?uid=8478>.

  • Mayer, A. M., and Harel, E. 1979. Polyphenol oxidases in plants. Phytochemistry 18:193–215.

    Article  CAS  Google Scholar 

  • Mayer, A. M., and Harel, E. 1991. Phenoloxidases and their significance in fruit and vegetables, pp. 373–398, in P. F. Fox (ed.). Food Enzymology. Elsevier, New York.

    Google Scholar 

  • Mellet, M. A. and Schoeman, A. S. 2004. Impact of Bt cotton on bollworm population and egg parasitism. ISB News Report Dec. 2004.

  • Nakayama, T., Yonekura-Sakakibara, K., Sato, T., Kikuchi, S., Fukui, Y., Fukuchi-Mizutani, M., Ueda, T., Nakao, M., Tanaka, Y., Kusumi, T., and Nishino, T. 2000. Aureusidin synthase: a polyphenol oxidase homolog responsible for flower coloration. Science 290:1163–1166.

    Article  PubMed  CAS  Google Scholar 

  • Newman, S. M., Eannetta, N. T., Yu, H., Prince, J. P., Carmen de Vicente, M., Tanksley, S. D., and Steffens, J. C. 1993. Organisation of the tomato polyphenol oxidase gene family. Plant Mol. Biol. 21:1035–1051.

    Article  PubMed  CAS  Google Scholar 

  • Orozco-Cárdenas, M. L., Narvaez-Vasquez, J., and Ryan, C. A. 2001. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13:179–191.

    Article  PubMed  Google Scholar 

  • Raj, S. N., Sarosh, B. R., and Shetty, H. S. 2006. Induction and accumulation of polyphenol oxidase activities as implicated in development of resistance against pearl millet downy mildew disease. Funct. Plant Biol. 33:563–571.

    Article  CAS  Google Scholar 

  • Ramiro, D. A., Guerreiro-Filho, O., and Mazzafera, P. 2006. Phenol contents, oxidase activities, and the resistance of coffee to the leaf miner Leucoptera coffeella. J. Chem. Ecol. 32:1977–1988.

    Article  PubMed  CAS  Google Scholar 

  • Raubenheimer, D., and Simpson, S. J. 1992. Analysis of covariance: an alternative to nutritional indices. Entomol. Exp. Appl. 62:221–231.

    Article  Google Scholar 

  • Ren, F., and Lu, Y.-T. 2006. Overexpression of tobacco hydroxyproline-rich glycopeptide systemin precursor A gene in transgenic tobacco enhances resistance against Helicoverpa armigera larvae. Plant Sci. 171:286–292.

    Article  CAS  Google Scholar 

  • Ryan, J., Gregory, P., and Tingey, W. 1983. Glandular trichomes: enzymic browning assays for improved selection of resistance to the green peach aphid. Am. Potato J. 60:861–868.

    Article  Google Scholar 

  • SAS Institute. 2003. SAS/STAT user’s guide: version 9.1 SAS Institute Inc., Cary, N.C.

  • Sikora, E. 2000. Tomato insect management guide for Alabama. Alabama Cooperative Extension Nov. 2000 ANR-1191. <http://www.aces.edu/pubs/docs/A/ANR-1191>.

  • Simmons, A. T., Gurr, G. M., McGrath, D., Martin, P. M., and Nicol, H. I. 2004. Entrapment of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) on grandular trichomes of Lycopersicon species. Aust. J. Entomol. 43:196–200.

    Article  Google Scholar 

  • Steffens, J. C., and Walters, D. 1991. Biochemical aspects of glandular trichome-mediated insect resistance in the Solanaceae, pp. 136–149, in P. A. Hedin (ed.). Naturally Occurring Pest Bioregulators. American Chemical Society, Washington, DC.

    Google Scholar 

  • Steffens, J. C., Harel, E., and Hunt, M. D. 1994. Polyphenol oxidase, pppp. 275–312, in B. Ellio, G. W. Kuroki, and H. A. Stafford (eds.). Genetic Engineering of Plant Secondary Metabolism. Plenum, New York.

    Google Scholar 

  • Stoner, A., Frank, J. A., and Gentile, A. G. 1968. The relationship of glandular hairs on tomatoes to spider mite resistance. Proc. Am. Soc. Hortic. Sci. 93:532–538.

    Google Scholar 

  • Stout, M. J., Workman, K. V., Bostock, R. M., and Duffey, S. S. 1998. Stimulation and attenuation of induced resistance by elicitors and inhibitors of chemical induction in tomato (Lycopersicon esculentum) foliage. Entomol. Exp. Appl. 86:267–279.

    Article  CAS  Google Scholar 

  • Summers, C. G., Godfrey, L. D., and Long, R. 1996. Sugar beet: sugar beet armyworm. UCIPM Pest Management Guidelines. USDANR publication 3339.

  • Summers, C. G., Godfrey, L. D., Rethwisch, M., and Haviland, D. R. 2004. UC Management Guidelines for Beet Armyworm on Alfalfa. UCIPM Online. <http://www.ipmucdavis.edu/PMG/r1300711.html>.

  • Thipyapong, P., and Steffens, J. C. 1997. Tomato polyphenol oxidase (PPO): differential response of the PPO F promoter to injuries and wound signals. Plant Physiol. 115:409–418.

    PubMed  CAS  Google Scholar 

  • Thipyapong, P., Hunt, M. D., and Steffens, J. C. 1995. Systemic wound induction of potato (Solanum tuberosum) polyphenol oxidase. Phytochemistry 40:673–676.

    Article  CAS  Google Scholar 

  • Thipyapong, P., Joel, D. M., and Steffens, J. C. 1997. Differential expression and turnover of the tomato polyphenol oxidase gene family during vegetative and reproductive development. Plant Physiol. 113:707–718.

    PubMed  CAS  Google Scholar 

  • Thipyapong, P., Hunt, M. D., and Steffens, J. C. 2004a. Antisense downregulation of polyphenol oxidase results in enhanced disease susceptibility. Planta 220:105–117.

    Article  PubMed  CAS  Google Scholar 

  • Thipyapong, P., Melkonian, J., Wolfe, D. W., and Steffens, J. C. 2004b. Suppression of polyphenol oxidases increases stress tolerance in tomato. Plant Sci. 167:693–703.

    Article  CAS  Google Scholar 

  • Thipyapong, P., Mahanil, S., Bhonwong, A., Attajarusit, J., Stout, M. J., and Steffens, J. C. 2006. Increasing resistance of tomato to Lepidopteran insects by overexpression of polyphenol oxidase. Proceedings of the Ninth International Symposium on the Processing Tomato. W. J. Ashcroft (ed.). November 15–18, 2004, Australia: Melbourne. Acta Horticulturae 724:29–38.

  • Tillman, P. G. and Bell, R. 2006. Biological warfare against beet armyworm. Agricultural Research Magazine, Jan. 1998. ARS/USDA. <http://www.ars.usda.gov/is/ar/archive/jan98/army0198.htm>.

  • Tingey, W., and Sinden, S. 1982. Glandular pubescence, glycoalkaloid composition, and resistance to the green peach aphid, potato leaf hopper and potato flea beetle in Solanum berthaultii. Amer. Pot. J. 59:95–107.

    Article  CAS  Google Scholar 

  • Tingey, W., Plaisted, R., Laubengayer, J., and Mehlenbacher, S. 1982. Green peach aphid resistance by glandular trichomes in Solanum tuberosum × S. berthaultii hybrids. Am. Potato J. 59:241–251.

    Article  Google Scholar 

  • Tyagi, M., Kayastha, A. M., and Sinha, B. 2000. The role of peroxidase and polyphenol oxidase isozymes in wheat resistance to Alternaria triticina. Biol. Plant. 43:559–562.

    Article  CAS  Google Scholar 

  • Vaughn, K. C., Lax, A. R., and Duke, S. O. 1988. Polyphenol oxidase: the chloroplast oxidase with no established function. Physiol. Plant. 72:659–665.

    Article  CAS  Google Scholar 

  • Wang, J., and Constabel, C. P. 2004. Polyphenol oxidase overexpression in transgenic Populus enhances resistance to herbivory by forest tent caterpillar (Malacosoma disstria). Planta 220:87–96.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially supported by TRF-Master Research Grants from the Thailand Research Fund and the Center of Excellence on Agricultural Biotechnology, Postgraduate Education and Research Development Office, Commission on Higher Education, Ministry of Education, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyada Tantasawat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhonwong, A., Stout, M.J., Attajarusit, J. et al. Defensive Role of Tomato Polyphenol Oxidases against Cotton Bollworm (Helicoverpa armigera) and Beet Armyworm (Spodoptera exigua). J Chem Ecol 35, 28–38 (2009). https://doi.org/10.1007/s10886-008-9571-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-008-9571-7

Keywords

Navigation