Skip to main content
Log in

Herbivore-induced resistance in different groundnut germplasm lines to Asian armyworm, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae)

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Three groundnut germplasm lines, ICGV86699 (resistant), NCAC 343 (resistant) and TMV 2 (susceptible), were examined for Spodoptera litura (Fab.) resistance. Biochemical parameters such as oxidative enzyme activities, peroxidase (POD) and polyphenol oxidase (PPO), other defensive components such as total phenols, hydrogen peroxide (H2O2), malondialdehyde (MDA) and protein contents were evaluated in these germplasm lines after 24, 48, 72 and 96 h following S. litura infestation to characterize the mechanism of resistance. Enzyme activities and total phenols, H2O2, MDA and protein contents were increased following infestation; however, significance varied at different time intervals and among germplasm lines depending upon the induced level of resistance. The three germplasm lines differed in resistance mechanisms to S. litura and the resistance may be partly due to higher enzyme activities, and other components studied. Among the three germplasms tested, ICGV86699 showed greater elevation in POD and PPO activities and in phenolic and H2O2 contents at different time intervals as compared to NCAC 343 and TMV 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BSA:

Bovine serum albumin

EDTA:

Ethylenediaminetetraacetic acid

FW:

Fresh weight

GAE:

Gallic acid equivalents

H2O2 :

Hydrogen peroxide

KI:

Potassium iodide

LOX:

Lipoxygenase

MDA:

Malondialdehyde

Na2CO3 :

Sodium carbonate

POD:

Peroxidase

PPO:

Polyphenol oxidase

PVP:

Polyvinyl pyrolidone

ROS:

Reactive oxygen species

TBA:

Thiobarbituric acid

TBARS:

Thiobarbituric acid reactive substance

TCA:

Trichloroacetic acid

Tris–HCl:

Tris–hydrochloride

References

  • Agrawal AA, Fishbein M, Jetter R, Salminen JP, Goldstein JB, Freitag AE, Sparks JP (2009) Phylogenetic ecology of leaf surface traits in the milkweeds (Asclepias spp.): chemistry, ecophysiology, and insect behavior. New Phytol 183:848–867

    Article  PubMed  Google Scholar 

  • Allison SD, Schultz JC (2004) Differential activity of peroxidase isozyme in response to wounding, gypsy moth, and plant hormones in northern red oak. (Quercus rubra L.). J Chem Ecol 30(7):1363–1379

    Article  PubMed  CAS  Google Scholar 

  • Argandona VH, Chaman M, Cardemil L, Munoz O, Zuniga GE, Corcuera LJ (2001) Ethylene production and peroxidase activity in aphid-infested barley. J Chem Ecol 27:53–68

    Article  PubMed  CAS  Google Scholar 

  • Arimura GI, Kost C, Boland W (2005) Herbivore-induced, indirect plant defenses. Biochim Biophys Acta Mol Cell Biol Lipids 1734:91–111

    CAS  Google Scholar 

  • Berglund T, Ohlsson AB (1995) Defensive and secondary metabolism in plant tissue cultures, with special reference to nicotinamide, glutathione and oxidative stress. Plant Cell Tiss Org Cult 43:137–145

    Article  CAS  Google Scholar 

  • Bhonwong A, Stout MJ, Attajarusit J, Tantasawat P (2009) Defensive role of tomato Polyphenol oxidase against cotton bollworm (Helicoverpa armigera) and Beet armyworm (Spodoptera exigua). J Chem Ecol 35:28–38

    Article  PubMed  CAS  Google Scholar 

  • Boka K, Orban N, Kristof Z (2007) Dynamics and localization of H2O2 production in elicited plant cells. Protoplasma 230:89–97

    Article  PubMed  CAS  Google Scholar 

  • Boyko EV, Smith CM, Thara VK, Bruno JM, Deng Y, Starkey SR, Klaahsen DL (2006) The molecular basis of plant gene expression during aphid invasion: wheat Pto- and Pti-like sequences are involved in interactions between wheat and Russian wheat aphid (Homoptera: Aphididae). J Econ Entomol 99:1430–1445

    Article  PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bruinsma M, Dicke M (2008) Herbivore-induced indirect defence: from induction mechanisms to community ecology. In: Schaller A (ed) Induced plant resistance to herbivory. Springer, Berlin, pp 31–60

    Chapter  Google Scholar 

  • Carmak I, Horst JH (1991) Effects of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soyabean (Glycine max). Physiol Plant 83:463–468

    Article  Google Scholar 

  • Chen Y, Ni X, Buntin GD (2009) Physiological, nutritional and biochemical bases of corn resistance to foliage-feeding fall Armyworm. J Chem Ecol 35:297–306

    Article  PubMed  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  PubMed  CAS  Google Scholar 

  • Felton G, Korth K (2000) Trade-offs between pathogen and herbivore resistance. Curr Opin Plant Biol 3:309–314

    Article  PubMed  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  PubMed  CAS  Google Scholar 

  • Freeman HA, Nigam SN, Kelley TG, Ntare BR, Subrahmanyam P, Doughton D (1999) The world groundnut economy, facts, trends, and outlook. ICRISAT 14, Patancheru, AP, India

  • Gechev T, Gadjev I, Van Breusegem F, Inze D, Dukiandjiev S, Toneva V, Minkov I (2002) Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cell Mol Life Sci 59:708–714

    Article  PubMed  CAS  Google Scholar 

  • Green PWC, Stevenson PC, Simmonds MSJ, Sharma HC (2003) Phenolic compounds on the pod surface of pigeonpea, Cajanus cajan, mediate feeding behavior of larvae of Helicoverpa armigera. J Chem Ecol 29:811–821

    Article  PubMed  CAS  Google Scholar 

  • Gulsen O, Eickhoff T, Heng-Moss T, Shearman R, Baxendale F, Sarath G, Lee Donald (2010) Characterization of peroxidase changes in resistant and susceptible warm-season turfgrasses challenged by Blissus occiduus Arthropod Plant Interact 4:45–55

    Google Scholar 

  • Han Y, Wang Y, Bi JL, Yang XQ, Huang Y, Zhao X, Hu Y, Cai QN (2009) Constitutive and induced resistance in aphid-resistant and aphid-susceptible cultivars of wheat. J Chem Ecol 35:176–182

    Article  PubMed  CAS  Google Scholar 

  • He J, Chen F, Chen S, Lv G, Deng Y, Fang Z, Guan Z, He C (2011) Chrysanthemum leaf epidermal surface morphology and antioxidant and defense enzyme activity in response to aphid infestation. J Plant Physiol 168:687–693

    Article  PubMed  CAS  Google Scholar 

  • Heil M, Greiner S, Meimberg H, Kruger R, Noyer JL, Heubl G, Linsenmair KE, Boland W (2004) Evolutionary change from induced to constitutive expression of an indirect plant resistance. Nature 430:205–208

    Article  PubMed  CAS  Google Scholar 

  • Heng-Moss TM, Sarath G, Baxendale F, Novak D, Bose S, Ni X, Quisenberry S (2004) Characterization of oxidative enzyme changes in buffalograsses challenged by Blissus occiduus. J Econ Entomol 97:1086–1095

    Article  PubMed  CAS  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to herbivores. Ann Rev Plant Biol 59:41–66

    Article  CAS  Google Scholar 

  • Huang W, Zhikuan J, Qingfang H (2007) Effects of herbivore stress by Aphis medicaginis Koch on the malondialdehyde contents and activities of protective enzymes in different alfalfa varieties. Acta Ecol Sinica 27(6):2177–2183

    Article  CAS  Google Scholar 

  • Johnson KS, Felton GW (2001) Plant phenolics as dietary antioxidants for herbivorous insects: a test with genetically modified tobacco. J Chem Ecol 27:2579–2597

    Article  PubMed  CAS  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. The University of Chicago Press, Chicago

    Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore induced plant volatile emissions in nature. Science 291:2141–2144

    Article  PubMed  CAS  Google Scholar 

  • Kranthi KR, Jadhav DR, Kranthi S, Wanjari RR, Ali SS, Russel DA (2002) Insecticide resistance in five major insect pests of cotton in India. Crop Prot 21:449–460

    Article  CAS  Google Scholar 

  • Lawrence PK, Koundal KR (2002) Plant protease inhibitors in control of phytophagous insects. Eur J Biotechnol 5:93–109

    Google Scholar 

  • Maffei ME, Mithofer A, Arimura GI, Uchtenhagen H, Bossi S, Bertea CM, Cucuzza LS, Novero M, Volpe V, Quadro S, Boland W (2006) Effects of feeding Spodoptera littoralis on Lima bean leaves. III. Membrane depolarization and involvement of hydrogen peroxide. Plant Physiol 140:1022–1035

    Article  PubMed  CAS  Google Scholar 

  • Maffei ME, Mithofer A, Boland W (2007) Insects feeding on plants: rapid signals and responses preceding the induction of phytochemical release. Phytochemistry 68:2946–2959

    Article  PubMed  CAS  Google Scholar 

  • Mallikarjuna N, Pande S, Jadhav DR, Sastri DC, Rao JN (2004) Introgression of disease resistance genes from Arachiskempff mercadoi into cultivated groundnut. Plant Breeding 123:573–576

    Article  CAS  Google Scholar 

  • Mayer AM, Harel E (1979) Polyphenol oxidases in plant. Phytochemistry 18:193–215

    Article  CAS  Google Scholar 

  • Noreen Z, Ashraf M (2009) Change in antioxidant enzymes and some key metabolites in some genetically diverse cultivars of radish (Raphanus sativus L). Environ Exp Bot 67:395–402

    Article  CAS  Google Scholar 

  • Orozco-Cardenas M, Ryan CA (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci USA 96:6553–6557

    Article  PubMed  CAS  Google Scholar 

  • Powell G, Tosh CR, Hardie J (2006) Host plant selection by aphids: behavioral, evolutionary, and applied perspectives. Annu Rev Entomol 51:309–330

    Article  PubMed  CAS  Google Scholar 

  • Prasad MNR, Gowda MVC (2006) Mechanisms of resistance to tobacco cutworm (Spodoptera litura) and their implications to screening for resistance to groundnut. Euphytica 149:387–399

    Article  CAS  Google Scholar 

  • Ramiro DA, Guerreiro-Filho O, Mazzafera P (2006) Phenol contents, oxidase activities, and the resistance of coffee to the leaf miner Leucoptera coffeella. J Chem Ecol 32:1977–1988

    Article  PubMed  CAS  Google Scholar 

  • Rasmann S, Agrawal AA (2009) Plant defense against herbivory: progress in identifying synergism, redundancy, and antagonism between resistance traits. Curr Opin Plant Biol 12:473–478

    Article  PubMed  CAS  Google Scholar 

  • Rathna Kumar AL, Balasubramanian P (2000) Induct ion of phenols in groundnut rust resistance. Int Arach Newslet 20:55–57

    Google Scholar 

  • Senthil-Nathan S, Kalaivani K, Choi MY, Paik CH (2009) Effects of jasmonic acid-induced resistance in rice on the plant brownhopper, Nilaparvata lugens Stal (Homoptera: Delphacidae). Pestic Biochem Physiol 95:77–84

    Article  CAS  Google Scholar 

  • Shannon LM, Kay E, Lew JY (1966) Peroxidase isozymes from horse radish roots. Isolation and physical properties. J Biol Chem 241:2166–2172

    PubMed  CAS  Google Scholar 

  • Sharma HC, Pampathy G, Dwivedi SL, Reddy LJ (2003) Mechanism and diversity of resistance to insect pests in wild relatives of groundnut. J Econ Entomol 96(6):1886–1897

    Article  PubMed  CAS  Google Scholar 

  • Sharma HC, Pampathy G, Kumar R (2005a) Standardization of cage techniques to screen Chickpeas for resistance to Helicoverpa armigera (Lepidoptera: Noctuidae) in greenhouse and field conditions. J Econ Entomol 98(1):210–216

    Article  PubMed  CAS  Google Scholar 

  • Sharma HC, Pampathy G, Dhillon MK, Ridsdill-Smith JT (2005b) Detached leaf assay to screen for host plant resistance to Helicoverpa armigera. J Econ Entomol 98(2):568–576

    Article  PubMed  Google Scholar 

  • Sharma HC, Sujana G, Rao DM (2009) Morphological and chemical components of resistance to pod borer, Helicoverpa armigera in wild relatives of pigeonpea. Arthropod Plant Interact 3(3):151–161

    Article  Google Scholar 

  • Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378

    Article  PubMed  CAS  Google Scholar 

  • Usha Rani P, Jyothsna Y (2010) Biochemical and enzymatic changes in rice as a mechanism of defense. Acta Physiol Plant 32:695–701

    Article  Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    PubMed  CAS  Google Scholar 

  • War AR, Paulraj MG, War MY, Ignacimuthu S (2011a) Jasmonic acid- mediated induced resistance in groundnut (Arachis hypogaea L.) against Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). J Plant Growth Regul. doi:10.1007/s0034-011-9213-0

  • War AR, Paulraj MG, War MY, Ignacimuthu S (2011b) Differential defensive response of groundnut to Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). J Plant Interact. doi:10.1080/17429145.2011.587898

  • Zavala JA, Patankar AG, Gase K, Hui D, Baldwin IT (2004) Manipulation of endogenous trypsin proteinase inhibitor production in Nicotiana attenuata demonstrates their function as antiherbivore defenses. Plant Physiol 134:1181–1190

    Article  PubMed  CAS  Google Scholar 

  • Zhang SZ, Hau BZ, Zhang F (2008) Induction of the activities of antioxidative enzymes and the levels of malondialdehyde in cucumber seedlings as a consequence of Bemisia tabaci (Hemiptera: Aleyrodidae) infestation. Arthropod Plant Interact 2:209–213

    Article  Google Scholar 

  • Zhao LY, Chen JL, Cheng DF, Sun JR, Liu Y, Tian Z (2009) Biochemical and molecular characterizations of Sitobion avenae—induced wheat defense responses. Crop Prot 28:435–442

    Article  CAS  Google Scholar 

  • Zieslin N, Ben-Zaken R (1993) Peroxidase activity and presence of phenolic substances in peduncles of rose flowers. Plant Physiol Biochem 31:333–339

    CAS  Google Scholar 

Download references

Acknowledgments

We are highly thankful to Dr. H.C. Sharma (Principal Scientist, Entomology, ICRISAT, Patancheru, India) for providing the seeds and for his valuable suggestions throughout the work. First author is grateful to the corresponding author for providing necessary laboratory facilities and also for his valuable discussions, comments and financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savarimuthu Ignacimuthu.

Additional information

Communicated by B. Barna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

War, A.R., Paulraj, M.G., War, M.Y. et al. Herbivore-induced resistance in different groundnut germplasm lines to Asian armyworm, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). Acta Physiol Plant 34, 343–352 (2012). https://doi.org/10.1007/s11738-011-0833-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-011-0833-6

Keywords

Navigation