Skip to main content

Phenylpropanoid Metabolism Induced by Wounding and Insect Herbivory

  • Chapter
Induced Plant Resistance to Herbivory

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold T, Appel H, Patel V, Stochum E, Kavalie A, Schultz J (2004) Carbohydrate translocation determines the phenolic content of Populus foliage: a test of the sink-source model of plant defense. New Phytol 164:157–164

    Article  CAS  Google Scholar 

  • Barbehenn RV, Cheek S, Gasperut A, Lister E, Maben R (2005) Phenolic compounds in red oak and sugar maple leaves have prooxidant activities in the midguts of Malacosoma disstria and Orgyia leucostigma caterpillars. J Chem Ecol 31:969–988

    Article  PubMed  CAS  Google Scholar 

  • Barbehenn RV, Jones CP, Karonen M, Salminen J-P (2006) Tannin composition affects the oxidative activities of tree leaves. J Chem Ecol 32:2235–2251

    Article  PubMed  CAS  Google Scholar 

  • Batard Y, Schalk M, Pierrel M-A, Zimmerlin A, Durst F, Werck-Reichart D (1997) Regulation of the cinnamate 4-hydroxylase (CYP73A1) in jerusalem artichoke tubers in response to wounding and chemical treatments. Plant Physiol 113:951–959

    PubMed  CAS  Google Scholar 

  • Berenbaum MR, Zangerl AR (1996) Phytochemical diversity: adaptation or random variation? In: Romeo JT, Saunders JA, Barbosa P (eds) Phytochemical diversity and redundancy in ecological interactions. Plenum Press, New York, pp 1–24

    Google Scholar 

  • Bernards MA, Lewis NG (1998) The macromolecular aromatic domain in suberized tissue: a changing paradigm. Phytochemistry 47:915–933

    Article  PubMed  CAS  Google Scholar 

  • Bernards MA, Susag LM, Bedgar DB, Anterola AM, Lewis NG (2000) Induced phenylpropanoid metabolism during suberization and lignification: a comparative analysis. J Plant Physiol 157:601–607

    PubMed  CAS  Google Scholar 

  • Bernays EA, Driver GC, Bilgener M (1989) Herbivores and plant tannins. Adv Ecol Res 19:263–302

    Google Scholar 

  • Bi JL, Felton GW (1995) Foliar oxidative stress and insect herbivory: primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistance. J Chem Ecol 21:1511–1530

    Article  CAS  Google Scholar 

  • Bi JL, Felton GW (1997) Antinutritive and oxidative components as mechanisms of induced resistance in cotton. J Chem Ecol 23:97–117

    Article  CAS  Google Scholar 

  • Brignolas F, Lacroix B, Lieutier F, Sauvard D, Drouet A, Claudot, A-C, Yart A, Berryman AA, Christiansen E (1995) Induced responses in phenolic metabolism in two Norway spruce clones after wounding and inoculations with Ophiostoma polonicum, a bark beetle-associated fungus. Plant Physiol 109:821–827

    PubMed  CAS  Google Scholar 

  • Constable CP (1999) A survey of herbivore-induced defense proteins and phytochemicals. In: Agrawal AA, Tuzun S, Bent E (eds) Induced plant defenses against pathogens and herbivores: biochemistry, ecology and agriculture. The American Phytopathological Society, St. Paul, pp 137–166

    Google Scholar 

  • Cottle W, Kolattukudy PE (1982) Biosynthesis, deposition, and partial characterization of potato suberin phenolics. Plant Physiol 69:393–399

    Article  PubMed  CAS  Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (Secondary Metabolites). In: Buchanan B, Gruissem R, Jones R (eds) Biochemistry & molecular biology of plants. American Society of Plant Biologists, Rockville, pp 1250–1318

    Google Scholar 

  • Devoto A, Magusin A, Chang H-S, Chilcott C, Zhu T, Turner JG (2005) Expression profiling reveals COI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defense, and hormone interactions. Plant Mol Biol 58:497–513

    Article  PubMed  CAS  Google Scholar 

  • Ding H, Lamp RL, Ames N (2000) Inducible production of phenolic acids in wheat and antibiotic resistance to Sitodiplosis mosellana. J Chem Ecol 26:969–984

    Article  CAS  Google Scholar 

  • Dixon RA, Chen F, Guo D, Parnathi K (2001) The biosynthesis of monolignols: a ‘metabolic grid’, or independent pathways to guaiacyl and syringyl units? Phytochemistry 57: 1069–1084

    Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    Article  PubMed  CAS  Google Scholar 

  • Dyer WE, Henstrand JM, Handa AK, Herrmann KM (1989) Wounding induces the first enzyme of the shikimate pathway in Solanaceae. Proc Natl Acad Sci USA 86:7370–7373

    Article  PubMed  CAS  Google Scholar 

  • Ehlting J, Mattheus N, Aeschliman DS, Li E, Hamberger B, Cullis IF, Zhuang J, Kaneda M, Mansfield SD, Samuels L, Ritland K, Ellis BE, Bohlmann J, Douglas CJ (2005) Global transcript profiling of primary stems from Arabidopsis thaliana identifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation. Plant J 42:618–640

    Article  PubMed  CAS  Google Scholar 

  • Ellard-Ivey M, Douglas CJ (1996) Role of jasmonates in the elicitor- and wound-inducible expression of defense genes in parsley and transgenic tobacco. Plant Physiol 112: 183–192

    PubMed  CAS  Google Scholar 

  • Gatehouse JA (2002) Plant resistance towards insect herbivores: a dynamic interaction. New Phytol 156:145–169

    Article  CAS  Google Scholar 

  • Görlach J, Raesecke HR, Rentsch D, Regenass M, Roy P, Zla M, Keel C, Boller T, Amrhein N, Schmid J (1995) Temporally distinct accumulation of transcripts encoding enzymes of the prechorismate pathway in elicitor-treated, cultured tomato cells. Proc Natl Acad Sci USA 92:3166–3170

    Article  PubMed  Google Scholar 

  • Hartley SE, Firn RD (1989) Phenolic biosynthesis, leaf damage, and insect herbivory in birch (Betula pendula). J Chem Ecol 15(1):275–283

    Article  Google Scholar 

  • Honkanen T, Haukioja E, Kitunen V (1999) Responses of Pinus sylvestris branches to simulated herbivory are modified by tree sink/source dynamics and by external resources. Functional Ecol 13:126–140

    Article  Google Scholar 

  • Humphreys JM, Chapple C (2002) Rewriting the lignin road map. Current Opin Plant Biol 5: 224–229

    Article  CAS  Google Scholar 

  • Kim D-G, Kim T-J, Lee S-H, Lee I (2005) Effect of wounding and chemical treatments on expression of the gene encoding cinnamate-4-hydroxylase in Campotheca acuminata leaves. J Plant Biol 48:298–303

    Article  CAS  Google Scholar 

  • Korth KL, Dixon RA (1997) Evidence for chewing insect-specific molecular events distinct from general wound response in leaves. Plant Physiol 115:1299–1305

    PubMed  CAS  Google Scholar 

  • Kuroki G, Conn EE (1988) Increased chorismate mutase levels as a response to wounding in Solanum tuberosum L. tubers. Plant Physiol 86: 895–898

    CAS  Google Scholar 

  • Leitner M, Boland W, Mithöfer A (2005) Direct and indirect defenses induced by piercing-sucking and chewing herbivores in Medicago truncatula. New Phytol 167:597–606

    Article  PubMed  CAS  Google Scholar 

  • Lois R, Hahlbrock K (1991) Differential wound activation of members of the phenylalanine ammonia-lyase and 4-coumarate: CoA ligase gene families in various organs of parsley plants. Z Naturforschung 47c:90–94

    Google Scholar 

  • Malmberg A (1984) $N$-Feruloylputrescine in infected potato tubers. Acta Chem Scand B 38:153–155

    Google Scholar 

  • Minamikawa T, Kojima M, Uritani I (1966) Dehydroquinate hydro-lyase and shikimate: NADP oxidoreductase in sliced roots of sweet potato. Arch Biochem Biophys 117:194–195

    Article  PubMed  CAS  Google Scholar 

  • Mutikainen P, Walls M, Ovaska J, KeinĂ€nen M, Julkunen-Tiitto R, Vapaavouri E (2000) Herbivore resistance in Betula pendula: Effect of fertilization, defoliation and plant genotype. Ecology 81:49–65

    Google Scholar 

  • Negrel J, Lotfy S, Javelle F (1995) Modulation of the activity of two hydroxycinnamoyl transferases in wound-healing potato tuber discs in response to pectinase or abscisic acid. J Plant Physiol 146:318–322

    CAS  Google Scholar 

  • Negrel J, Pollet B, Lapierre C (1996) Ether-linked ferulic acid amides in natural and wound periderms of potato tuber. Phytochemistry 43:1195–1199

    Article  CAS  Google Scholar 

  • Olson MM, Roseland CR (1991) Induction of the coumarins scopoletin and ayapin in sunflower by insect-feeding stress and effects of coumarins on the feeding of sunflower beetle (Coleoptera: Chrysomelidae). Environ Entomol 20:1166–1172

    CAS  Google Scholar 

  • Pearce G, Marchand PA, Griswold J, Lewis NG, Ryan CA (1998) Accumulation of feruloyltyramine and $p$-coumaroyltyramine in tomato leaves in response to wounding. Phytochemistry 47(4):659–664

    Article  Google Scholar 

  • Peters D, Constabel CP (2002) Molecular analysis of herbivore-induced condensed tannin synthesis: cloning and expression of dihydroflavonol reductase from trembling aspen (Populus tremulus). Plant J 32:701–712

    Article  PubMed  CAS  Google Scholar 

  • Qiuju Q, Xueyan S, Liang P, Xiwu G (2005) Induction of phenylalanine ammonia-lyase and lipoxygenase in cotton seedlings by mechanical wounding and aphid infestation. Prog Nat Sci 15(5):419–423

    Article  Google Scholar 

  • Ralph SG, Yueh H, Friedmann M, Aeschliman D, Zeznik JA, Nelson CC, Butterfield YSN, Kirkpatrick R, Liu J, Jones SJM, Marra MA, Douglas CJ, Ritland K, Bohlmann J (2006) Conifer defence against insects: microarray gene expression profiling of Sitka spruce (Picea sitchensis) induced by mechanical wounding or feeding by spruce budworms (Choristoneura occidentalis) or white pine weevils (Pissodes strobi) reveals large-scale changes of the host transcriptome. Plant Cell Environ 29:1545–1570

    Article  PubMed  Google Scholar 

  • Razal RA, Ellis S, Singh S, Lewis NG, Towers GHN (1996) Nitrogen recycling in phenylpropanoid metabolism. Phytochemistry 41:31–36

    Article  CAS  Google Scholar 

  • Razem FA, Bernards MA (2002) Hydrogen peroxide is required for poly(phenolic) domain formation during wound-induced suberization. J Agric Food Chem 50:1009–1015

    Article  PubMed  CAS  Google Scholar 

  • Reymond P, Bodenhausen N, van Poecke RMP, Krishnamurthy V, Dicke M, Farmer EE (2004) A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16:3132–3147

    Article  PubMed  CAS  Google Scholar 

  • Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12: 707–719

    Article  PubMed  CAS  Google Scholar 

  • Richard S, Lapointe G, Rutledge RG, SĂ©guin A (2000) Induction of chalcone synthase expression in white spruce by wounding and jasmonate. Plant Cell Physiol 41(8): 982–987

    Article  Google Scholar 

  • Saltveit ME, Choi Y-J, TomĂĄs-BerberĂĄn FA (2005) Involvement of components of the phospholipid-signaling pathway in wound-induced phenylpropanoid metabolism in lettuce (Lactuca Sativa) leaf tissue. Physiol Plant 125:345–355

    Article  CAS  Google Scholar 

  • Santiago R, Butron A, Arnason JT, Reid LM, Souto XC, Malvar RA (2006) Putative role of cell wall phenylpropanoids in Sesamia noonagrioides (Lepidoptera: Noctuidae) resistance. J Agric Food Chem 54:2274–2279

    Article  PubMed  CAS  Google Scholar 

  • Santiago R, Malvar RA, Baamonde MD, Revilla P, Souto XC (2005) Free phenols in maize pith and their relationship with resistance to Sesamia nonagrioides (Lepidoptera: Noctuidae) attack. J Econ Entomol 98 (4):1349–1356

    Article  Google Scholar 

  • Schoch G, Goepfert S, Morant M, Hehn A, Meyer D, Ullmann P, Werck-Reichhart D (2001) CYP98A3 from Arabidopsis thaliana is a 3â€Č-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J Biol Chem 276:36566–36574

    Article  PubMed  CAS  Google Scholar 

  • Schultz JC, Baldwin IT (1982) Oak leaf quality declines in response to defoliation by gypsy moth larvae. Science 217:149–151

    Article  PubMed  Google Scholar 

  • Singh S, Lewis NG, Towers GHN (1998) Nitrogen recycling during phenylpropanoid metabolism in sweet potato tubers. J Plant Physiol 153:316–323

    PubMed  CAS  Google Scholar 

  • Spencer PA, Towers GHN (1991) Restricted occurrence of acetophenone signal compounds. Phytochemistry 30:2933–2937

    Article  CAS  Google Scholar 

  • Strack D (1997) Phenolic metabolism. In: Dey PM, Harborne JB (eds) Plant biochemistry. Academic Press, New York, pp 387–416

    Google Scholar 

  • Treutter D (2005) Significance of flavonoids in plant resistance and enhancement of their biosythesis. Plant Biol 7:581–591

    Article  PubMed  CAS  Google Scholar 

  • van der Ven WTG, LeVesque CS, Perring TM, Walling LL (2000) Local and systemic changes in squash gene expression in response to silverleaf whitefly feeding. Plant Cell 12:1409–1423

    Article  PubMed  Google Scholar 

  • van Heerden PS, Towers GHN, Lewis NG (1996) Nitrogen metabolism in lignifying Pinus taeda cell cultures. J Biol Chem 271:12350–12355

    Article  PubMed  Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    PubMed  CAS  Google Scholar 

  • Wildermuth MC (2006) Variations on a theme: synthesis and modification of plant benzoic acids. Current Opin Plant Biol 9:288–296

    Article  CAS  Google Scholar 

  • Zangerl AR (1990) Furanocoumarin induction in wild parsnip: evidence for an induced defense against herbivores. Ecology 71:1933–1940

    Article  CAS  Google Scholar 

  • Zangerl AR (1999) Locally-induced responses in plants: the ecology and evolution of restrained defense. In: Agrawal AA, Tuzun S, Bent E (eds) Induced plant defenses against pathogens and herbivores: biochemistry, ecology and agriculture. The American Phytopathological Society, St. Paul, pp 231–249

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bernards, M.A., BĂ„strup-Spohr, L. (2008). Phenylpropanoid Metabolism Induced by Wounding and Insect Herbivory. In: Schaller, A. (eds) Induced Plant Resistance to Herbivory. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8182-8_9

Download citation

Publish with us

Policies and ethics