Skip to main content
Log in

Abscisic Acid Response of Corn (Zea mays L.) Roots and Protoplasts to Lanthanum

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Lanthanum ions antagonize calcium and are used as a Ca2+ channel blocker but their direct effects are unknown. We investigated lanthanum effects on endogenous abscisic acid (ABA) levels in protoplasts and intact primary roots of Zea mays L. Application of 1 mM La3+ reduced primary root elongation, caused swelling of root tips, and essentially doubled the ABA content in intact roots but decreased ABA in root protoplasts in a concentration-dependent manner. Osmotic stress increased ABA level in protoplasts more than in intact roots. Temporal ABA changes in response to La3+ treatment indicate that La3+ affects root growth at least partially via ABA pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Audran C, Liotenberg S, Gonneau M, North H, Frey A, Tap-Waksman K, Vartanian N, Marion-Poll A (2001) Localisation and expression of zeaxanthin epoxidase mRNA in Arabidopsis in response to drought stress and during seed development. Aust J Plant Phys 28:1161–1173

    CAS  Google Scholar 

  • Barrero JM, Piqueras P, Gonzalez-Guzman M, Serrano R, Rodriguez PL, Ponce MR, Micol JL (2005) A mutational analysis of the ABA1 gene of Arabidopsis thaliana highlights the involvement of ABA in vegetative development. J Exp Bot 56:2071–2083

    Article  PubMed  CAS  Google Scholar 

  • Bianco-Trinchant J, Guigonis JM, Le Page-Degivry MT (1993) Early release of ABA from cell-walls during rose petal protoplast isolation. J Exp Bot 44:957–962

    Article  CAS  Google Scholar 

  • Bianco-Trinchant J, Le Page-Degivry MT (1998) ABA synthesis in protoplasts of different origin in response to osmotic stress. J Plant Growth Regul 25:135–141

    Article  CAS  Google Scholar 

  • Christmann A, Moes D, Himmelbach A, Yang Y, Tang Y, Grill E (2006) Integration of abscisic acid signalling into plant responses. Plant Biol 8:314–325

    Article  PubMed  CAS  Google Scholar 

  • Diatloff E, Smith FW, Asher CJ (1995) Rare-earth elements and plant-growth 1. Effects of lanthanum and cerium on root elongation of corn and mungbean. J Plant Nutr 18:1963–1976

    CAS  Google Scholar 

  • Ding JP, Pickard BG (1993) Mechanosensory calcium-selective cation channels in epidermal cells. Plant J 3:83–110

    Article  CAS  Google Scholar 

  • Dolan L (2001) The role of ethylene in root hair growth in Arabidopsis. J Plant Nut Soil Sci 164:141–145

    Article  CAS  Google Scholar 

  • dos Remedios CG (1981) Lanthanide ion probes of calcium-binding sites on cellular membranes. Cell Calcium 2:29–51

    Article  CAS  Google Scholar 

  • Duckham SC, Linforth RST, Taylor IB (1991) Abscisic-acid-deficient mutants at the aba gene locus of Arabidopsis thaliana are impaired in the epoxidation of zeaxanthin. Plant Cell Environ 14:601–606

    Article  CAS  Google Scholar 

  • Fasano JM, Massa GD, Gilroy S (2002) Ionic signaling in plant responses to gravity and touch. J Plant Growth Regul 21:71–88

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45

    PubMed  CAS  Google Scholar 

  • Gampala SSL, Hagenbeek D, Rock CD (2001) Functional interactions of lanthanum and phospholipase D with the abscisic acid signaling effecters VP1 and ABI1-1 in rice protoplasts. J Biol Chem 27:69855–69860

    Google Scholar 

  • Gelli A, Blumwald E (1997) Hyperpolarization-activated Ca2+-permeable channels in the plasma-membrane of tomato cells. J Membr Biol 155:35–45

    Article  PubMed  CAS  Google Scholar 

  • Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, Mccourt P (2000) Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 12:1117–1126

    Article  PubMed  CAS  Google Scholar 

  • Hagenbeek D, Quatrano RS, Rock CD (2000) Trivalent ions activate abscisic acid-inducible promoters through an ABI1-dependent pathway in rice protoplasts. Plant Physiol 123:1553–1560

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  Google Scholar 

  • He YW, Loh CS (2000) Cerium and lanthanum promote floral initiation and reproductive growth of Arabidopsis thaliana. Plant Sci 159:117–124

    Article  PubMed  CAS  Google Scholar 

  • Hose E, Steudle E, Hartung W (2000) Abscisic acid and hydraulic conductivity of maize roots: a study using cell- and root-pressure probes. Planta 211:874–882

    Article  PubMed  CAS  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1997) Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J 2:1067–1078

    Article  Google Scholar 

  • Lehmann H, Stelzer R, Holzamer S, Kunz U, Gierth M (2000) Analytical electron microscopical investigations on the apoplastic pathways of lanthanum transport in barley roots. Planta 211:816–822

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Hasenstein KH (2005) La3+ uptake and its effect on the cytoskeleton in root protoplasts of Zea mays L. Planta 220:658–666

    Article  PubMed  CAS  Google Scholar 

  • Loveys BR, Robinson SP (1987) Abscisic acid synthesis and metabolism in barley leaves and protoplasts. Plant Sci 49:23–30

    Article  CAS  Google Scholar 

  • Marin E, Nussaume L, Quesada A, Gonneau M, Sotta B, Hugueney P, Frey A, Marionpoll A (1996) Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J 15:2331–2342

    PubMed  CAS  Google Scholar 

  • Martin RB, Richardson FS (1979) Lanthanides as probes for calcium in biological systems. Q Rev Biophys 12:181–209

    PubMed  CAS  Google Scholar 

  • Quiquampoix H, Ratcliffe RG, Ratkovic S, Vucinic Z (1990) 1H and 31P NMR investigation of gadolinium uptake in maize roots. J Inorg Biochem 38:265–275

    Article  CAS  Google Scholar 

  • Rock CD, Quatrano RS (1996) Lanthanide ions are agonists of transient gene expression in rice protoplasts and act in synergy with ABA to increase Em gene expression. Plant Cell Rep 15:371–376

    Article  CAS  Google Scholar 

  • Saab IN, Sharp RE, Pritchard J, Voetberg GS (1990) Increased endogenous abscisic-acid maintains primary root growth and inhibits shoot growth of maize seedlings at low water potentials. Plant Physiol 93:1329–1336

    PubMed  CAS  Google Scholar 

  • Sharp RE, Lenoble ME (2002) ABA, ethylene and the control of shoot and root growth under water stress. J Exp Bot 53:33–37

    Article  PubMed  CAS  Google Scholar 

  • Sheen J (1996) Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274:1900–1902

    Article  PubMed  CAS  Google Scholar 

  • Sheen J (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127:1466–1475

    Article  PubMed  CAS  Google Scholar 

  • Shi P, Zeng F, Song W, Zhang M, Deng R (2002) Effects of calcium and lanthanum on ABA biosynthesis in cucumber leaves. Rus J Plant Physiol 49:696–699

    Article  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Cur Opin Plant Biol 3:217–223

    CAS  Google Scholar 

  • Skriver K, Mundy J (1990) Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2:503–512

    Article  PubMed  CAS  Google Scholar 

  • Slovik S, Hartung W (1992) Compartmental distribution and redistribution of abscisic-acid in intact leaves. III: Analysis of the stress-signal chain. Planta 187:37–47

    Article  CAS  Google Scholar 

  • Thomson WW, Platt KA, Campbell N (1973) Use of lanthanum to delineate apoplastic continuum in plants. Cytobios 8:57–62

    PubMed  CAS  Google Scholar 

  • Tyler G (2005) Rare earth elements in soil and plant systems - A review. Plant Soil 267:191–206

    Article  Google Scholar 

  • Van Steveninck RFM, van Steveninck ME, Chescoe D (1976) Intracellular binding of lanthanum in root tips of barley (Hordeum vulgare). Protoplasma 90:89–97

    Article  Google Scholar 

  • Wang H, Miyazaki S, Kawai K, Deyholos M, Galbraith DW, Bohnert HJ (2003) Temporal progression of gene expression responses to salt shock in maize roots. Plant Mol Biol 52:873–891

    Article  PubMed  CAS  Google Scholar 

  • Wang YY, Mopper S, Hasenstein KH (2001) Effects of salinity on endogenous ABA, IAA, JA and SA in Iris hexagona. J Chem Ecol 27:327–342

    Article  PubMed  CAS  Google Scholar 

  • Weiler EW, Schnabl H, Hornberg C (1982) Stress-related levels of abscisic-acid in guard-cell protoplasts of Vicia faba L. Planta 154:24–28

    Article  CAS  Google Scholar 

  • Xie Z, Ruas P, Shen QJ (2005) Regulatory networks of the phytohormone abscisic acid. Vitam Horm 72:235–269

    Article  PubMed  CAS  Google Scholar 

  • Xiong LM, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36

    Article  PubMed  CAS  Google Scholar 

  • Xiong LM, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165–S183

    Article  PubMed  CAS  Google Scholar 

  • Zeevaart JAD, Creelman RA (1988) Metabolism and physiology of abscisic acid. Ann Rev Plant Physiol Plant Mol Biol 39:439–473

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl H. Hasenstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M., Kilaru, A. & Hasenstein, K.H. Abscisic Acid Response of Corn (Zea mays L.) Roots and Protoplasts to Lanthanum. J Plant Growth Regul 27, 19–25 (2008). https://doi.org/10.1007/s00344-007-9026-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-007-9026-3

Keywords

Navigation