Skip to main content
Log in

La3+ uptake and its effect on the cytoskeleton in root protoplasts of Zea mays L.

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

La3+ ions are known to antagonize Ca2+ and are used as a Ca2+ channel blocker but little is known on the direct effects of La3+. Micromolar La3+ concentrations promoted root growth while higher concentrations were inhibitory. The uptake of La3+ in maize root protoplasts revealed a membrane binding component (0.14 and 0.44 pmol min−1 protoplast−1 for 100 and 1,000 μM La3+) followed by a slower concentration and time-dependent uptake. Uptake was reduced by Ca2+, but had no substantial effect on other ions. La3+ shifted microtubule organization from random to parallel but caused aggregation of microfilaments. Our data suggest that La3+ is taken up into plant cells and affects growth via stabilization of the cytoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CW :

Cell wall

ICP-OES :

Inductively coupled plasma spectrometry

LAN :

Lanthanum

MF :

Microfilament

MT :

Microtubule

References

  • Abe S, Takeda J (1988) Effects of LaCl3 on surface charges, dielectrophoresis, and electrofusion of barley protoplasts. Plant Cell Physiol 87:389–394

    CAS  Google Scholar 

  • Andersland JM, Fisher DD, Wymer CL, Cyr RJ, Parthasarathy MV (1994) Characterization of a monoclonal antibody prepared against plant actin. Cell Motil Cytoskeleton 29:339–344

    CAS  PubMed  Google Scholar 

  • Belyavskaya NA (1996) Calcium and graviperception in plants: inhibitor analysis. Int Rev Cytol 168:123–185

    CAS  Google Scholar 

  • Blancaflor EB, Jones DL, Gilroy S (1998) Alterations in the cytoskeleton accompany aluminum induced growth inhibition and morphological changes in primary roots of maize. Plant Physiol 118:159–172

    Article  CAS  PubMed  Google Scholar 

  • Brown RC, Lemmon BE (1995) Methods in plant immunolight microscopy. Methods Cell Biol 49:85–107

    CAS  PubMed  Google Scholar 

  • Bush SD (1995) Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Physiol Plant Mol Biol 46:95–122

    Article  CAS  Google Scholar 

  • Collings DA, White RG, Overall RL (1992) Ionic current changes associated with the gravity-induced bending response in roots of Zea mays L. Plant Physiol 100:1417–1426

    CAS  Google Scholar 

  • Collings DA, Allen NS, Shibaoka (1998) Plasma membrane-associated actin in bright Yellow 2 tobacco cells. Plant Physiol 118:917–928

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (1997) Assembly and enlargement of the primary cell wall in plants. Annu Rev Cell Dev Biol 13:171–201

    Article  CAS  PubMed  Google Scholar 

  • Cyr RJ (1994) Microtubules in plant morphogenesis: role of the cortical array. Annu Rev Cell Biol 10:153–180

    CAS  PubMed  Google Scholar 

  • Cyr RJ, Palevitz BA (1995) Organization of cortical microtubules in plant cells. Curr Opin Cell Biol 7:65–71

    Article  CAS  PubMed  Google Scholar 

  • Diatloff E, Smith FW, Asher CJ (1995a) Rare earth elements and plant growth. II. Responses of corn and mungbean to low concentrations of lanthanum in dilute, continuously flowing nutrient solutions. J Plant Nutr 18:1977–1986

    CAS  Google Scholar 

  • Diatloff E, Smith FW, Asher CJ (1995b) Rare earth elements and plant growth. III. Responses of corn and mungbean to low concentrations of cerium in dilute, continuously flowing nutrient solutions. J Plant Nutr 18:1987–2003

    Google Scholar 

  • Foissner I, Lichtscheidl IK, Wasteneys GO (1996) Actin-based vesicle dynamics and exocytosis during wound wall formation in Characean internodal cells. Cell Motil Cytoskeleton 35:35–48

    Article  CAS  PubMed  Google Scholar 

  • Friedman H, Meir S, Rosenberger I, Halevy AH, Kaufman PB, Philosoph-Hadas S (1998) Inhibition of the gravitropic response of snapdragon spikes by the calcium-channel blocker lanthanum chloride. Plant Physiol 118:483–492

    Article  CAS  PubMed  Google Scholar 

  • Gao YS, Zeng FL, Yi A, Ping S, Jing LH (2003) Research of the entry of rare earth elements Eu3+ and La3+ into plant cell. Biol Trace Element Res 91:253–265

    Article  CAS  Google Scholar 

  • Giddings TH, Staehelin LA (1991) Microtubule-mediate control of microfibril deposition: a re-examination of the hypothesis. In: Lyoyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, San Diego, pp 85–99

  • Guo B (1985) Present and future situation of rare earth in China’s agronomy. In: Xu G, Xia J (eds) Proceedings of international conference on rare earth development and applications. Science Press, Beijing, pp 1522–1602

  • Hasenstein KH (1991) Measurement of circumnutation in maize roots. Micrograv Sci Technol 4:262–266

    CAS  Google Scholar 

  • Hasezawa S, Syono K (1988) Rearrangement of cortical microtubules in elongating cells derived from tobacco protoplasts—a time course observation by immunofluorescence microscopy. J Plant Physiol 133:46–51

    Google Scholar 

  • He YW, Loh CS (2000) Cerium and lanthanum promote floral initiation and reproductive growth of Arabidopsis thaliana. Plant Sci 159:117–124

    Article  CAS  PubMed  Google Scholar 

  • Jackson C, Hall JL (1993) A fine structural analysis of auxin-induced elongation of cucumber hypocotyls, and the effects of calcium antagonists and ionophores. Ann Bot 72:193–204

    Article  CAS  Google Scholar 

  • Ketelaar T, Emons AC (2001) The cytoskeleton in plant cell growth: lessons from root hairs. New Phytol 152:409–418

    Article  CAS  Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260

    Article  CAS  Google Scholar 

  • Kuss-Wymer CL, Cyr RJ (1992) Tobacco protoplasts differentiate into elongate cells without net microtubule depolymerization. Protoplasma 110:425–430

    Google Scholar 

  • Ledbetter MC, Porter KR (1964) Morphology of microtubules of plant cells. Science 144:872–874

    Google Scholar 

  • Lehmann H, Stelzer R, Holzamer S, Kunz U, Gierth M (2000) Analytical electron microscopical investigations on the apoplastic pathways of lanthanum transport in barley roots. Planta 211:816–822

    Article  CAS  PubMed  Google Scholar 

  • Leonard RT, Nagahashi G, Thomson WW (1975) Effect of lanthanum on ion absorption in corn roots. Plant Physiol 55:542–546

    CAS  Google Scholar 

  • Meehan B, Peverill K, Skroce A (1993) The impact of bioavailable rare earth elements in Australia agricultural soils. In: Australia soil and plant analysis. Australia: First National Workshop on Soil and Plant Analysis. pp 36–41

  • Melan MA (1990) Taxol maintains organized microtubule patterns in protoplasts which lead to resynthesis of organized cell wall microfibrils. Protoplasma 153:169–177

    Google Scholar 

  • Miller DD, DeRuitjer NCA, Bisseling T, Emons AM (1999) The role of actin in root hair morphogenesis: studies with lipochito-oligosaccharides as a growth stimulator and cytochalasin as an actin perturbing drug. Plant J 17:141–154

    Article  CAS  Google Scholar 

  • Mundhara R, Rashid A (2002) Stimulation of shoot-bud regeneration on hypocotyl of Linum seedlings, on a transient withdrawal of calcium: effect of calcium, cytokinin and thidiazuron. Plant Sci 162:211–214

    Article  CAS  Google Scholar 

  • Osawa H, Matsumoto H (2002) Aluminum triggers malate-independent potassium release via ion channels from the root apex in wheat. Planta 215:405–412

    Article  CAS  PubMed  Google Scholar 

  • Pantoja O, Gelli A, Blumwald E (1992) Voltage-dependent calcium channels in plant vacuoles. Science 255:1567–1570

    Google Scholar 

  • Pellegrini L, Epiardlahaye M, Penot M (1991) Use of lanthanum as a marker of apoplastic transportation in cystoseira-Nodicalis (Fucales, Cystoseiraceae) Can J Bot 69:18–25

    Google Scholar 

  • Polisensky DH, Braam J (1996) Cold-shock regulation of the Arabidopsis TCH genes and the effects of modulating intracellular calcium levels. Plant Physiol 111:1271–1279

    Article  CAS  PubMed  Google Scholar 

  • Rock CD, Quatrano RS (1996) Lanthanide ions are agonists of transient gene expression in rice protoplasts and act in synergy with ABA to increase Em gene expression. Plant Cell Rep 15:371–376

    Article  CAS  Google Scholar 

  • Schwiebert EM, Mills JW, Stanton BA (1994) Actin-based cytoskeleton regulates a chloride channel and cell volume in a renal cortical collecting duct cell line. J Biol Chem 269:7081–7089

    CAS  PubMed  Google Scholar 

  • Sheen J (2001) Signal transduction in maize and Arabidopsis mesophyll protoplast. Plant Physiol 127:1466–1475

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Liu DL, Yu ZQ, Zhang Q, Bai J, Sun D (2003) An apoplastic mechanism for short-term effects of rare earth elements at lower concentrations. Plant Cell Environ 26:887–896

    Article  CAS  PubMed  Google Scholar 

  • Tang R, Xiao G (1996) Rare earths. In: Wang K, Tang R, Xu H, Luo X (eds) Trace elements in life sciences. China Measuring Publishing Press, Beijing, pp 450–509

  • Tester M (1990) Plant ion channels: whole-cell and single-channel studies. New Phytol 114:305–340

    Google Scholar 

  • Thomson WW, Platt KA, Campbell N (1973) The use of lanthanum to delineate the apoplastic continuum in plants. Cytobios 8:57–62

    CAS  PubMed  Google Scholar 

  • Tilly BC, Edixhoven MJ, Tertoolen LGJ, Morii N, Saitoh Y, Narumiya S, de Jonge HR (1996) Activation of the osmo-sensitive chloride conductance involves P21rho and is accompanied by a transient reorganization of the F-actin cytoskeleton. Mol Biol Cell 7:1419–1427

    CAS  PubMed  Google Scholar 

  • Velasco JR, Domingo LE, Lansangan AS, Sierra ZN (1979) Cultural studies on coconut Cadang: reaction of plants to rare earths, thalium and certain soil samples. Philipp J Coconut Stud 4:1–13

    CAS  Google Scholar 

  • Wang E, Taylor RW, Pfeiffer DR (1998) Mechanism and specificity of lanthanide series cation transport by ionophores A23187, 4-BrA23187, and ionomycin. Biophys J 75:244–254

    Google Scholar 

  • Weerdenburg C, Seagull RW (1987) The effect of taxol and colchicines on microtubule and microfibril arrays in elongating plant cells in culture. Can J Bot 66:1707–1716

    Google Scholar 

  • Whitson G, Murray F (1974) The Casparian strip as a barrier to the movement of lanthanum in corn roots. Science 183:670–671

    Google Scholar 

  • Wymer C, Lloyd C (1996) Dynamic microtubules: implication for cell wall patterns. Trends Plant Sci 1:222–228

    Article  Google Scholar 

  • Wymer CL, Wymer SA, Cosgrove DJ, Cyr RJ (1996) Plant cell responds to external forces and the response requires intact microtubules. Plant Physiol 110:425–430

    CAS  PubMed  Google Scholar 

  • Yermiyahu U, Rytwo G, Brauer DK, Kinraide TB (1997) Binding and electrostatic attraction of lanthanum (La3+) and aluminum (Al3+) to wheat root plasma membranes. J Membr Biol 159:239–252

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Susan Mopper for assistance with the statistical analyses and Dr. Tom Pesacreta for assistance with the microscopy. This work was supported by NASA (grant no. NAG10-0190) and the Graduate Student Organization of UL Lafayette.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl H. Hasenstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M., Hasenstein, K.H. La3+ uptake and its effect on the cytoskeleton in root protoplasts of Zea mays L.. Planta 220, 658–666 (2005). https://doi.org/10.1007/s00425-004-1379-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1379-2

Keywords

Navigation