Skip to main content
Log in

Lanthanide ions are agonists of transient gene expression in rice protoplasts and act in synergy with ABA to increase Em gene expression

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Previous work has shown that in rice suspension cells, NaCl at 0.4 M can induce Em gene expression and act synergistically with ABA, possibly by potentiating the ABA response pathway through a rate-limiting intermediate (R.M. Bostock and R.S. Quatrano (1992) Plant Physiol., 98, 1356–1363). Since calcium is an intermediate in ABA regulation of stomatal closure, we tested the effect of calcium changes on ABA-inducible Em gene expression in transiently transformed rice protoplasts. We show that calcium is required for ABA-inducible Em-GUS expression and can act in synergy with ABA. The trivalent ions lanthanum, gadolinium, and aluminum, which are known to interact with calcium- and other signaling pathways, can act at sub-millimolar concentrations to increase GUS reporter gene expression driven by several promoters in transiently transformed rice protoplasts. This effect is not specific for the ABA-inducible Em promoter, but is synergistic with ABA. The lanthanum synergy with ABA does not require calcium. In rice suspension cells, lanthanum alone does not induce Em gene expression, in contrast to transiently transformed protoplasts, yet can act synergistically with ABA to effectively increase the sensitivity to ABA greater than tenfold. Trivalent ions may be a useful tool to study the regulation of gene expression. The possible effects of trivalent ions on ABA signal transduction and gene expression are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan AC, Fricker MD, Ward JL, Beale MH, Trewavas AJ (1994) Plant Cell 6: 1319–1328

    Google Scholar 

  • Assmann SM (1993) Ann. Rev. Cell Biol. 9: 345–375

    Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K, eds. (1994) Current protocols in molecular biology. Wiley and Sons, New York

    Google Scholar 

  • Blatt MR, Thiel G, Trentham DM (1990) Nature 346: 766–769

    Google Scholar 

  • Bostock RM, Quatrano RS (1992) Plant Physiol. 98: 1356–1363

    Google Scholar 

  • Chanturiya AN, Nikoloshina HV (1994) J. Membr. Biol. 137: 71–77

    Google Scholar 

  • Chomczynski P, Sacchi N (1987) Anal. Biochem. 162: 156–159

    Article  CAS  PubMed  Google Scholar 

  • DeSilva DLR, Cox RC, Hetherington AM, Mansfield TA (1985) New Phytol. 101: 555–563

    Google Scholar 

  • Ding JP, Pickard BG (1993) Plant J. 3: 83–110

    Google Scholar 

  • Gilroy S, Read ND, Trewavas AJ (1990) Nature 343: 769–771

    Google Scholar 

  • Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM (1992) Plant Cell 4: 1251–1261

    Article  CAS  PubMed  Google Scholar 

  • Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J, Morris PC, Bouvier-Durand M, Vartanian N (1994) Plant Mol. Biol.26: 1557–1577

    Google Scholar 

  • Graziana A, Fosset M, Ranjeva R, Hetherington AM, Lazdunski M (1988) Biochemistry 27: 764–768

    Google Scholar 

  • Grivennikova VG, Gavrikova EV, Vinogradov AD (1994) FEBS Lett. 347: 243–246

    Google Scholar 

  • Guiltinan MJ, Marcotte WR Jr, Quatrano RS (1990) Science 250: 267–271

    CAS  PubMed  Google Scholar 

  • Haug A (1984) CRC Crit. Rev. Plant Sci. 1: 345–373

    Google Scholar 

  • Hughes PJ, Pennington SR (1993) Biochem. Soc.Trans. 21: 368S

  • Irving HR, Gehring CA, Parish RW (1992) Proc. Natl. Acad. Sci. USA 89: 1790–1794

    Google Scholar 

  • Johannes E, Brosnan JM, Sanders D (1992) Plant J. 2: 97–102

    Google Scholar 

  • Kidou S, Umeda M, Kato A, Uchimiya H (1993) Plant Mol. Biol. 21: 191–194

    Google Scholar 

  • Leung J, Bouvier-Durand M, Morris P-C, Guerrier D, Chefdor F, Giraudat J (1994) Science 264: 1448–1452

    Google Scholar 

  • Litts JC, Colwell GC, Chakerian RL, Quatrano RS (1987) Nuc. Acids Res. 15: 3607–3618

    Google Scholar 

  • Lu G, Sehnke PC, Ferl RJ (1994) Plant Cell 6: 501–510

    Google Scholar 

  • MacRobbie EAC (1992) Phil. Trans. R. Soc. Lond. B 338: 5–18

    Google Scholar 

  • Marcotte WR Jr, Bayley CC, Quatrano RS (1988) Nature 335: 454–457

    Google Scholar 

  • Marcotte WR Jr, Russell SH, Quatrano RS (1989) Plant Cell 1: 969–976.

    Article  CAS  PubMed  Google Scholar 

  • McCarty DR, Hattori T, Carson CB, Vasil V, Lazar M, Vasil IK (1991) Cell 66: 895–905

    Google Scholar 

  • Meyer K, Leube MP, Grill E (1994) Science 264: 1452–1455

    Google Scholar 

  • Morimura S, Takahashi E, Matsumoto H (1978) Zur Pflanzenphysiol. 88: 395–401

    Google Scholar 

  • Pantoja O, Gelli A, Blumward E (1992) Science 255: 1567–1570

    Google Scholar 

  • Pierce M, Raschke K (1981) Planta 148: 174–182

    Google Scholar 

  • Reid RJ, Smith FA (1992) Plant Physiol. 100: 637–643

    Google Scholar 

  • Rock CD, Quatrano RS (1994) Curr. Biol. 4: 1013–1015

    Google Scholar 

  • Sharma SS, Sharma S, Rai VK (1992) Annals Bot. 70: 295–299

    Google Scholar 

  • Uribe A, Chavez E, Jimenez M, Zazueta C, Moreno-Sanchez R (1994) Biochim. Biophys. Acta 1186: 107–116

    Google Scholar 

  • van der Veen R, Heimovaara-Dijkstra S, Wang M (1992) Plant Physiol. 100: 699–70

    Google Scholar 

  • van Steveninck RFM, van Steveninck ME, Chescoe D (1976) Protoplasma 90: 89–97

    Google Scholar 

  • Wang M, Van Duijn B, Schram AW (1991) FEBS Lett. 278: 69–74

    Google Scholar 

  • Wood PC, Wojcikiewicz RJ, Burgess J, Castleden CM, Nahorski SR (1994) J. Neurochem. 62: 2219–2223

    Google Scholar 

  • Zhang W, McElroy D, Wu R (1991) Plant Cell 3: 1155–1165

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. L. Rodriguez

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rock, C.D., Quatrano, R.S. Lanthanide ions are agonists of transient gene expression in rice protoplasts and act in synergy with ABA to increase Em gene expression. Plant Cell Reports 15, 371–376 (1996). https://doi.org/10.1007/BF00232374

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00232374

Key words

Navigation