Skip to main content
Log in

Modulation of Plant Defenses by Ethylene

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Ethylene (ET) plays a critical role in the activation of plant defenses against different biotic stresses through its participation in a complex signaling network that includes jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA). Pathogen attack, wounding, and herbivory trigger asymmetric activation of this defense signaling network, thereby affecting the final balance of interactions between its components and establishing a targeted response to the initial threat. Ethylene’s contribution to the modulation of this defense network relies on the complexity of the regulation of multigene families involved in ET biosynthesis, signal transduction, and crosstalk and enables the plant to fine-tune its response. The function of the members of these multigene families is tightly regulated at transcriptional, post-transcriptional, and post-translational levels. It is generally accepted that ET cooperates with JA in the activation of defenses against necrotrophic pathogens and antagonizes SA-dependent resistance against biotrophic pathogens. However, this is likely an oversimplified view, because cooperative interactions between ET and SA pathways have been reported and ET has been implicated in the activation of defenses against some biotrophic and hemibiotrophic pathogens. Therefore, deciphering ET’s place in this hormonal network is essential to understanding how the cell orchestrates an optimal response to a specific biotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.

Similar content being viewed by others

References

  • Allen MD, Yamasaki K, Ohme-Takagi M, Tateno M, Suzuki M. 1998. A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J 17:5484–5496

    Article  PubMed  CAS  Google Scholar 

  • Aloni R, Wolf A, Feigenbaum P, Avni A, Klee HJ. 1998. The never ripe mutant provides evidence that tumor-induced ethylene controls the morphogenesis of Agrobacterium tumefaciens-induced crown galls on tomato stems. Plant Physiol 117:841–849

    Article  PubMed  CAS  Google Scholar 

  • Alonso E, de Carvalho Niebel F, Obregon P, Gheysen G, et al. 1995. Differential in vitro DNA binding activity to a promoter element of the gn1 beta-1,3-glucanase gene in hypersensitively reacting tobacco plants. Plant J 7:309–320

    Article  PubMed  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Solano R, Wisman E, Ferrari S, et al. 2003. Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proc Natl Acad Sci USA 100:2992–2997

    Article  PubMed  CAS  Google Scholar 

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, et al. 2004. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479

    Article  PubMed  CAS  Google Scholar 

  • Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, et al. 2000. Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406:512–515

    Article  PubMed  CAS  Google Scholar 

  • Avni A, Bailey BA, Mattoo AK, Anderson JD. 1994. Induction of ethylene biosynthesis in Nicotiana tabacum by a Trichoderma viride xylanase is correlated to the accumulation of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase transcripts. Plant Physiol 106:1049–1055

    Article  PubMed  CAS  Google Scholar 

  • Babula D, Misztal LH, Jakubowicz M, Kaczmarek M, Nowak W, et al. 2006. Genes involved in biosynthesis and signalisation of ethylene in Brassica oleracea and Arabidopsis thaliana: identification and genome comparative mapping of specific gene homologues. Theor Appl Genet 112:410–420

    Article  PubMed  CAS  Google Scholar 

  • Baldwin IT. 1998. Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc Natl Acad Sci USA 95:8113–8118

    Article  PubMed  CAS  Google Scholar 

  • Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA. 2006. Volatile signaling in plant–plant interactions: “talking trees” in the genomics era. Science 311:812–815

    Article  PubMed  CAS  Google Scholar 

  • Beckman CH. 2000. Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiol Mol Plant Pathol 57:101–110

    Article  CAS  Google Scholar 

  • Berrocal-Lobo M, Molina A, Solano R. 2002. Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J 29:23–32

    Article  PubMed  CAS  Google Scholar 

  • Berrocal-Lobo M, Molina A. 2004. Ethylene response factor 1 mediates Arabidopsis resistance to the soilborne fungus Fusarium oxysporum. Mol Plant Microbe Interact 17:763–770

    Article  PubMed  CAS  Google Scholar 

  • Blume B, Grierson D. 1997. Expression of ACC oxidase promoter-GUS fusions in tomato and Nicotiana plumbaginifolia regulated by developmental and environmental stimuli. Plant J 12:731–746

    Article  PubMed  CAS  Google Scholar 

  • Boter M, Ruiz-Rivero O, Abdeen A, Prat S. 2004. Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev 18:1577–1591

    Article  PubMed  CAS  Google Scholar 

  • Bradley DJ, Kjellbom P, Lamb CJ. 1992. Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70:21–30

    Article  PubMed  CAS  Google Scholar 

  • Brodersen P, Petersen M, Bjorn Nielsen H, Zhu S, et al. 2006. Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J 47:532–546

    PubMed  CAS  Google Scholar 

  • Broekaert WF, Delaure SL, De Bolle MF, Cammue BP. 2006. The role of ethylene in host-pathogen interactions. Annu Rev Phytopathol 44:393–416

    Article  PubMed  CAS  Google Scholar 

  • Broglie KE, Biddle P, Cressman R, Broglie R. 1989. Functional analysis of DNA sequences responsible for ethylene regulation of a bean chitinase gene in transgenic tobacco. Plant Cell 1:599–607

    Article  PubMed  CAS  Google Scholar 

  • Brown RL, Kazan K, McGrath KC, Maclean DJ, Manners JM. 2003. A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol 132:1020–1032

    Article  PubMed  CAS  Google Scholar 

  • Buttner M, Singh KB. 1997. Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein. Proc Natl Acad Sci USA 94:5961–5966

    Article  PubMed  CAS  Google Scholar 

  • Chae HS, Kieber JJ. 2005. Eto Brute? Role of ACS turnover in regulating ethylene biosynthesis. Trends Plant Sci 10:291–296

    Article  PubMed  CAS  Google Scholar 

  • Chakravarthy S, Tuori RP, D’Ascenzo MD, Fobert PR, Despres C, et al. 2003. The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements. Plant Cell 15:3033–3050

    Article  PubMed  CAS  Google Scholar 

  • Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, et al. 1997. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89:1133–1144

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, et al. 2002. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Alexander L, Grierson D. 2004. Constitutive expression of EIL-like transcription factor partially restores ripening in the ethylene-insensitive Nr tomato mutant. J Exp Bot 55:1491–1497

    Article  PubMed  CAS  Google Scholar 

  • Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, et al. 2002. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–677

    Article  PubMed  CAS  Google Scholar 

  • Cheong YH, Moon BC, Kim JK, Kim CY, Kim MC, et al. 2003. BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol 132:1961–1972

    Article  PubMed  CAS  Google Scholar 

  • Clarke JD, Volko SM, Ledford H, Ausubel FM, Dong X. 2000. Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis. Plant Cell 12:2175–2190

    Article  PubMed  CAS  Google Scholar 

  • Cohn JR, Martin GB. 2005. Pseudomonas syringae pv. tomato type III effectors AvrPto and AvrPtoB promote ethylene-dependent cell death in tomato. Plant J 44:139–154

    PubMed  CAS  Google Scholar 

  • Cui J, Bahrami AK, Pringle EG, Hernandez-Guzman G, Bender CL, et al. 2005. Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Proc Natl Acad Sci USA 102:1791–1796

    Article  PubMed  CAS  Google Scholar 

  • de Bruxelles GL, Roberts MR. 2001. Signals regulating multiple responses to wounding and herbivores. Crit Rev Plant Sci 20:487–521

    Article  Google Scholar 

  • De Vos M, Van Zaanen W, Koornneef A, Korzelius J, Dicke M, et al. 2006. Herbivore-induced resistance against microbial pathogens in Arabidopsis. Plant Physiol 142:352–363

    Article  PubMed  CAS  Google Scholar 

  • Devadas SK, Enyedi A, Raina R. 2002. The Arabidopsis hrl1 mutation reveals novel overlapping roles for salicylic acid, jasmonic acid and ethylene signalling in cell death and defence against pathogens. Plant J 30:467–480

    Article  PubMed  CAS  Google Scholar 

  • Devoto A, Nieto-Rostro M, Xie D, Ellis C, Harmston R, et al. 2002. COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J 32:457–466

    Article  PubMed  CAS  Google Scholar 

  • Diaz J, ten Have A, van Kan JA. 2002. The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea. Plant Physiol 129:1341–1351

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA. 2001. Natural products and plant disease resistance. Nature 411:843–847

    Article  PubMed  CAS  Google Scholar 

  • Ellis C, Turner JG. 2001. The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell 13:1025–1033

    Article  PubMed  CAS  Google Scholar 

  • Ellis C, Karafyllidis I, Wasternack C, Turner JG. 2002. The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14:1557–1566

    Article  PubMed  CAS  Google Scholar 

  • Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH. 2004. Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci USA 101:1781–1785

    Article  PubMed  CAS  Google Scholar 

  • Esquerre-Tugaye MT, Lafitte C, Mazau D, Toppan A, Touze A. 1979. Cell surfaces in plant–microorganism interactions: II. Evidence for the accumulation of hydroxyproline-rich glycoproteins in the cell wall of diseased plants as a defense mechanism. Plant Physiol 64:320–326

    PubMed  CAS  Google Scholar 

  • Eyal Y, Meller Y, Lev-Yadun S, Fluhr R. 1993. A basic-type PR-1 promoter directs ethylene responsiveness, vascular and abscission zone-specific expression. Plant J 4:225–234

    Article  PubMed  CAS  Google Scholar 

  • Fan X, Mattheis JP, Roberts RG. 2000. Biosynthesis of phytoalexin in carrot root requires ethylene action. Physiol Plant 110:450–454

    Article  CAS  Google Scholar 

  • Farmer EE. 2001. Surface-to-air signals. Nature 411:854–856

    Article  PubMed  CAS  Google Scholar 

  • Farmer EE, Ryan CA. 1990. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase-inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RR, Gibson SI. 2002. ABA and sugar interactions regulating development: cross-talk or voices in a crowd? Curr Opin Plant Biol 5:26–32

    Article  PubMed  CAS  Google Scholar 

  • Frye CA, Innes RW. 1998. An Arabidopsis mutant with enhanced resistance to powdery mildew. Plant Cell 10:947–956

    Article  PubMed  CAS  Google Scholar 

  • Frye CA, Tang D, Innes RW. 2001. Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci USA 98:373–378

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M. 2000. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12:393–404

    Article  PubMed  CAS  Google Scholar 

  • Gingerich DJ, Gagne JM, Salter DW, Hellmann H, Estelle M, et al. 2005. Cullins 3a and 3b assemble with members of the broad complex/tramtrack/bric-a-brac (BTB) protein family to form essential ubiquitin-protein ligases (E3s) in Arabidopsis. J Biol Chem 280:18810–18821

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J, Ausubel FM. 1994. Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. Proc Natl Acad Sci USA 91:8955–8959

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J, Zook M, Mert F, Kagan I, Rogers EE, et al. 1997. Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. Genetics 146:381–392

    PubMed  CAS  Google Scholar 

  • Gu YQ, Yang C, Thara VK, Zhou J, Martin GB. 2000. Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell 12:771–786

    Article  PubMed  CAS  Google Scholar 

  • Gu YQ, Wildermuth MC, Chakravarthy S, Loh YT, Yang C, et al. 2002. Tomato transcription factors pti4, pti5, and pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 14:817–831

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Ecker JR. 2003. Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115(6):667–77

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Ecker JR. 2004. The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7:40–49

    Article  PubMed  CAS  Google Scholar 

  • Gutterson N, Reuber TL. 2004. Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7:465–471

    Article  PubMed  CAS  Google Scholar 

  • Ham BK, Park JM, Lee SB, Kim MJ, Lee IJ, et al. 2006. Tobacco Tsip1, a DnaJ-type Zn finger protein, is recruited to and potentiates Tsi1-mediated transcriptional activation. Plant Cell 18:2005–2020

    Article  PubMed  CAS  Google Scholar 

  • Hao D, Ohme-Takagi M, Sarai A. 1998. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. J Biol Chem 273:26857–26861

    Article  PubMed  CAS  Google Scholar 

  • Hart CM, Nagy F, Meins F Jr. 1993. A 61 bp enhancer element of the tobacco beta-1,3-glucanase B gene interacts with one or more regulated nuclear proteins. Plant Mol Biol 21:121–131

    Article  PubMed  CAS  Google Scholar 

  • Hase S, Van Pelt J, Van Loon C, Pieterse CMJ. 2003. Colonization of Arabidopsis roots by Pseudomonas fluorescens primes the plant to produce higher levels of ethylene upon pathogen infection. Physiol Mol Plant Pathol 62:219–226

    Article  CAS  Google Scholar 

  • Itzhaki H, Maxson JM, Woodson WR. 1994. An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-S-transferase (GST1) gene. Proc Natl Acad Sci USA 91:8925–8929

    Article  PubMed  CAS  Google Scholar 

  • Jackson PA, Galinha CI, Pereira CS, Fortunato A, Soares NC, et al. 2001. Rapid deposition of extensin during the elicitation of grapevine callus cultures is specifically catalyzed by a 40-kilodalton peroxidase. Plant Physiol 127:1065–1076

    Article  PubMed  CAS  Google Scholar 

  • Kahl J, Siemens DH, Aerts RJ, Gabler R, Kuhnemann F, et al. 2000. Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore. Planta 210:336–342

    Article  PubMed  CAS  Google Scholar 

  • Kamo T, Hirai N, Tsuda M, Fujioka D, Ohigashi H. 2000. Changes in the content and biosynthesis of phytoalexins in banana fruit. Biosci Biotechnol Biochem 64:2089–2098

    Article  PubMed  CAS  Google Scholar 

  • Karban R, Baldwin IT, Baxter KJ, Laue G, Felton GW. 2000. Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 125:66–71

    Article  Google Scholar 

  • Karban R, Maron J, Felton GW, Ervin G, Eichenseer H. 2003. Herbivore damage to sagebrush induces resistance in wild tobacco: evidence for eavesdropping between plants. Oikos 100:325–332

    Article  Google Scholar 

  • Kazan K. 2006. Negative regulation of defence and stress genes by EAR-motif-containing repressors. Trends Plant Sci 11:109–112

    Article  PubMed  CAS  Google Scholar 

  • Kessler A, Baldwin IT. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    Article  PubMed  CAS  Google Scholar 

  • Kim YS, Choi D, Lee MM, Lee SH, Kim WT. 1998. Biotic and abiotic stress-related expression of 1-aminocyclopropane-1-carboxylate oxidase gene family in Nicotiana glutinosa L. Plant Cell Physiol 39:565–573

    PubMed  CAS  Google Scholar 

  • Knoester M, van Loon LC, van den Heuvel J, Hennig J, Bol JF, et al. 1998. Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Proc Natl Acad Sci USA 95:1933–1937

    Article  PubMed  CAS  Google Scholar 

  • Kunkel BN, Brooks DM. 2002. Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331

    Article  PubMed  CAS  Google Scholar 

  • Lawton K, Weymann K, Friedrich L, Vernooij B, Uknes S, et al. 1995. Systemic acquired resistance in Arabidopsis requires salicylic acid but not ethylene. Mol Plant Microbe Interact 8:863–870

    PubMed  CAS  Google Scholar 

  • Lee JH, Hong JP, Oh SK, Lee S, Choi D, et al. 2004. The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants. Plant Mol Biol 55:61–81

    Article  PubMed  CAS  Google Scholar 

  • Lehman A, Black R, Ecker JR. 1996. HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell 85:183–194

    Article  PubMed  CAS  Google Scholar 

  • Leon P, Sheen J. 2003. Sugar and hormone connections. Trends Plant Sci 8:110–116

    Article  PubMed  CAS  Google Scholar 

  • Liu JH, Lee-Tamon SH, Reid DM. 1997. Differential and wound-inducible expression of 1-aminocylopropane-1-carboxylate oxidase genes in sunflower seedlings. Plant Mol Biol 34:923–933

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Zhang S. 2004. Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16:3386–3399

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R. 2003. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo O, Chico JM, Sanchez-Serrano JJ, Solano R. 2004. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16:1938–1950

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo O, Solano R. 2005. Molecular players regulating the jasmonate signalling network. Curr Opin Plant Biol 8:532–540

    Article  PubMed  CAS  Google Scholar 

  • Magnani E, Sjolander K, Hake S. 2004. From endonucleases to transcription factors: evolution of the AP2 DNA binding domain in plants. Plant Cell 16:2265–2277

    Article  PubMed  CAS  Google Scholar 

  • Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, et al. 2000. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26:403–410

    Article  PubMed  CAS  Google Scholar 

  • McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, et al. 2005. Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139:949–959

    Article  PubMed  CAS  Google Scholar 

  • Meller Y, Sessa G, Eyal Y, Fluhr R. 1993. DNA-protein interactions on a cis-DNA element essential for ethylene regulation. Plant Mol Biol 23:453–463

    Article  PubMed  CAS  Google Scholar 

  • Montgomery J, Goldman S, Deikman J, Margossian L, Fischer RL. 1993. Identification of an ethylene-responsive region in the promoter of a fruit ripening gene. Proc Natl Acad Sci USA 90:5939–5943

    Article  PubMed  CAS  Google Scholar 

  • Morrissey JP, Osbourn AE. 1999. Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol Mol Biol Rev 63:708–724

    PubMed  CAS  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H. 2006a. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140: 411–432

    Article  CAS  Google Scholar 

  • Nakano T, Suzuki K, Ohtsuki N, Tsujimoto Y, Fujimura T, et al. 2006b. Identification of genes of the plant-specific transcription-factor families cooperatively regulated by ethylene and jasmonate in Arabidopsis thaliana. J Plant Res 119:407–413

    Article  CAS  Google Scholar 

  • Nakazato Y, Tamogami S, Kawai H, Hasegawa M, Kodama O. 2000. Methionine-induced phytoalexin production in rice leaves. Biosci Biotechnol Biochem 64:577–583

    Article  PubMed  CAS  Google Scholar 

  • Nemhauser JL, Hong F, Chory J. 2006. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126:467–475

    Article  PubMed  CAS  Google Scholar 

  • Nickstadt A, Thomma BPHJ, Feussner I, Kangasjärvi J, Zeier J, et al. 2004. The jasmonate-insensitive mutant jin1 shows increased resistance to biotrophic as well as necrotrophic pathogens. Mol Plant Pathol 5:425–434

    Article  CAS  Google Scholar 

  • Nie X, Singh RP, Tai GC. 2002. Molecular characterization and expression analysis of 1-aminocyclopropane-1-carboxylate oxidase homologs from potato under abiotic and biotic stresses. Genome 45:905–913

    Article  PubMed  CAS  Google Scholar 

  • Nimchuk Z, Eulgem T, Holt BF 3rd, Dangl JL. 2003. Recognition and response in the plant immune system. Annu Rev Genet 37:579–609

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO, et al. 1996. Ethylene as a signal mediating the wound response of tomato plants. Science 274:1914–1917

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell PJ, Jones JB, Antoine FR, Ciardi J, Klee HJ. 2001. Ethylene-dependent salicylic acid regulates an expanded cell death response to a plant pathogen. Plant J 25:315–323

    Article  PubMed  CAS  Google Scholar 

  • Oh IS, Park AR, Bae MS, Kwon SJ, Kim YS, et al. 2005. Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell 17:2832–2847

    Article  PubMed  CAS  Google Scholar 

  • Ohme-Takagi M, Shinshi H. 1990. Structure and expression of a tobacco beta-1,3-glucanase gene. Plant Mol Biol 15:941–946

    Article  PubMed  CAS  Google Scholar 

  • Ohme-Takagi M, Shinshi H. 1995. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182

    Article  PubMed  CAS  Google Scholar 

  • Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M. 2001. Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13:1959–1968

    Article  PubMed  CAS  Google Scholar 

  • Onate-Sanchez L, Singh KB. 2002. Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection. Plant Physiol 128:1313–1322

    Article  PubMed  CAS  Google Scholar 

  • Park JM, Park CJ, Lee SB, Ham BK, Shin R, et al. 2001. Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13:1035–1046

    Article  PubMed  CAS  Google Scholar 

  • Peleman J, Boerjan W, Engler G, Seurinck J, Botterman J, et al. 1989. Strong cellular preference in the expression of a housekeeping gene of Arabidopsis thaliana encoding S-adenosylmethionine synthetase. Plant Cell 1:81–93

    Article  PubMed  CAS  Google Scholar 

  • Peñacortés H, Albrecht T, Prat S, Weiler EW, Willmitzer L. 1993. Aspirin prevents wound-induced gene-expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 191:123–128

    Google Scholar 

  • Penmetsa RV, Cook DR. 1997. A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275:527–530

    Article  PubMed  CAS  Google Scholar 

  • Penninckx IA, Eggermont K, Terras FR, Thomma BP, De Samblanx GW, et al. 1996. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8:2309–2323

    Article  PubMed  CAS  Google Scholar 

  • Penninckx IA, Thomma BP, Buchala A, Metraux JP, Broekaert WF. 1998. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10:2103–2113

    Article  PubMed  CAS  Google Scholar 

  • Pierik R, Whitelam GC, Voesenek LA, de Kroon H, Visser EJ. 2004. Canopy studies on ethylene-insensitive tobacco identify ethylene as a novel element in blue light and plant–plant signalling. Plant J 38:310–319

    Article  PubMed  CAS  Google Scholar 

  • Pierik R, Tholen D, Poorter H, Visser EJ, Voesenek LA. 2006. The Janus face of ethylene: growth inhibition and stimulation. Trends Plant Sci 11:176–183

    Article  PubMed  CAS  Google Scholar 

  • Pieterse CM, van Wees SC, van Pelt JA, Knoester M, Laan R, et al. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580

    Article  PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Van Pelt JA, Ton J, Parchmann S, Mueller MJ, et al. 2000. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiol Mol Plant Pathol 57:123–134

    Article  CAS  Google Scholar 

  • Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S. 2003. EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell 115:679–689

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Meyerowitz EM. 1998. The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646

    PubMed  CAS  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, et al. 2000. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    Article  PubMed  CAS  Google Scholar 

  • Rieu I, Mariani C, Weterings K. 2003. Expression analysis of five tobacco EIN3 family members in relation to tissue-specific ethylene responses. J Exp Bot 54:2239–2244

    Article  PubMed  CAS  Google Scholar 

  • Robinette D, Matthysse AG. 1990. Inhibition by Agrobacterium tumefaciens and Pseudomonas savastanoi of development of the hypersensitive response elicited by Pseudomonas syringae pv phaseolicola. J Bacteriol 172:5742–5749

    PubMed  CAS  Google Scholar 

  • Roby D, Toppan A, Esquerre-Tugaye MT. 1985. Cell surfaces in plant–microorganism interactions: V. Elicitors of fungal and of plant origin trigger the synthesis of ethylene and of cell wall hydroxyproline-rich glycoprotein in plants. Plant Physiol 77:700–704

    PubMed  CAS  Google Scholar 

  • Roby D, Broglie K, Gaynor J, Broglie R. 1991. Regulation of a chitinase gene promoter by ethylene and elicitors in bean protoplasts. Plant Physiol 97:433–439

    PubMed  CAS  Google Scholar 

  • Rojo E, Leon J, Sanchez-Serrano JJ. 1999. Cross-talk between wound signalling pathways determines local versus systemic gene expression in Arabidopsis thaliana. Plant J 20:135–142

    Article  PubMed  CAS  Google Scholar 

  • Rojo E, Solano R, Sanchez-Serrano JJ. 2003. Interactions between signaling compounds involved in plant defense. J Plant Growth Regul 22:82–98

    Article  CAS  Google Scholar 

  • Ruther J, Kleier S. 2005. Plant–plant signaling: ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-Hexen-1-ol. J Chem Ecol 31:2217–2222

    Article  PubMed  CAS  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, et al. 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  PubMed  CAS  Google Scholar 

  • Samac DA, Hironaka CM, Yallaly PE, Shah DM. 1990. Isolation and characterization of the genes encoding basic and acidic chitinase in Arabidopsis thaliana. Plant Physiol 93:907–914

    PubMed  CAS  Google Scholar 

  • Sato T, Theologis A. 1989. Cloning the mRNA encoding 1-aminocyclopropane-1-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants. Proc Natl Acad Sci USA 86:6621–6625

    Article  PubMed  CAS  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, et al. 2000. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660

    Article  PubMed  CAS  Google Scholar 

  • Schmelz EA, Alborn HT, Tumlinson JH. 2003. Synergistic interactions between volicitin, jasmonic acid and ethylene mediate insect-induced volatile emission in Zea mays. Physiol Plant 117:403–412

    Article  PubMed  CAS  Google Scholar 

  • Shinshi H, Usami S, Ohme-Takagi M. 1995. Identification of an ethylene-responsive region in the promoter of a tobacco class I chitinase gene. Plant Mol Biol 27:923–932

    Article  PubMed  CAS  Google Scholar 

  • Showalter AM. 1993. Structure and function of plant cell wall proteins. Plant Cell 5:9–23

    Article  PubMed  CAS  Google Scholar 

  • Solano R, Stepanova A, Chao Q, Ecker JR. 1998. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12:3703–3714

    PubMed  CAS  Google Scholar 

  • Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, et al. 2005. Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17:2384–2396

    Article  PubMed  CAS  Google Scholar 

  • Spanu P, Grosskopf DG, Felix G, Boller T. 1994. The apparent turnover of 1-aminocyclopropane-1-carboxylate synthase in tomato cells is regulated by protein phosphorylation and dephosphorylation. Plant Physiol 106:529–535

    PubMed  CAS  Google Scholar 

  • Spoel SH, Koornneef A, Claessens SM, Korzelius JP, Van Pelt JA, et al. 2003. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770

    Article  PubMed  CAS  Google Scholar 

  • Sreedharan A, Penaloza-Vazquez A, Kunkel BN, Bender CL. 2006. CorR regulates multiple components of virulence in Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe Interact 19:768–779

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE, Yuen GY, Lehman CC. 1998. Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungus Pythium irregulare. Plant J 15:747–754

    Article  PubMed  CAS  Google Scholar 

  • Stogios PJ, Downs GS, Jauhal JJ, Nandra SK, Prive GG. 2005. Sequence and structural analysis of BTB domain proteins. Genome Biol 6:R82

    Article  PubMed  CAS  Google Scholar 

  • Stotz HU, Pittendrigh BR, Kroymann J, Weniger K, Fritsche J, et al. 2000. Induced plant defense responses against chewing insects. Ethylene signaling reduces resistance of Arabidopsis against Egyptian cotton worm but not diamondback moth. Plant Physiol 124:1007–1018

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Cardoza V, Mitchell DM, Bright L, Oldroyd G, Harris JM. 2006. Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation. Plant J 46:961–970

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi Y, Yoshikawa M, Takeba G, Tanaka K, Shibata D, et al. 1990. Molecular cloning and ethylene induction of mRNA encoding a phytoalexin elicitor-releasing factor, beta-1,3-endoglucanase, in soybean. Plant Physiol 93:673–682

    PubMed  CAS  Google Scholar 

  • Thomma B, Eggermont K, Penninckx I, Mauch-Mani B, Vogelsang R, et al. 1998. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95:15107–15111

    Article  PubMed  CAS  Google Scholar 

  • Thomma BP, Eggermont K, Tierens KF, Broekaert WF. 1999. Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol 121:1093–1102

    Article  PubMed  CAS  Google Scholar 

  • Thomma BP, Penninckx IA, Broekaert WF, Cammue BP. 2001. The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 13:63–68

    Article  PubMed  CAS  Google Scholar 

  • Thomma BP, Cammue BP, Thevissen K. 2002. Plant defensins. Planta 216:193–202

    Article  PubMed  CAS  Google Scholar 

  • Tieman DM, Ciardi JA, Taylor MG, Klee HJ. 2001. Members of the tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate ethylene responses throughout plant development. Plant J 26:47–58

    Article  PubMed  CAS  Google Scholar 

  • Ton J, Pieterse CMJ, Van Loon LC. 1999. Identification of a locus in Arabidopsis controlling both the expression of rhizobacteria-mediated induced systemic resistance (ISR) and basal resistance against Pseudomonas syringae pv. tomato. Mol Plant-Microbe Interact 12:911–918

    Article  PubMed  CAS  Google Scholar 

  • Ton J, Davison S, Van Wees SCM, Van Loon LC, Pieterse CMJ. 2001. The Arabidopsis ISR1 locus controlling rhizobacteria-mediated induced systemic resistance is involved in ethylene signaling. Plant Physiol 125:652–661

    Article  PubMed  CAS  Google Scholar 

  • Ton J, Mauch-Mani B. 2004. Beta-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J 38:119–130

    Article  PubMed  CAS  Google Scholar 

  • Toppan A, Roby D, Esquerre-Tugaye MT. 1982. Cell surfaces in plant-microorganism interactions : III. In vivo effect of ethylene on hydroxyproline-rich glycoprotein accumulation in the cell wall of diseased plants. Plant Physiol 70:82–86

    PubMed  CAS  Google Scholar 

  • Tournier B, Sanchez-Ballesta MT, Jones B, Pesquet E, Regad F, et al. 2003. New members of the tomato ERF family show specific expression pattern and diverse DNA-binding capacity to the GCC box element. FEBS Lett 550:149–154

    Article  PubMed  CAS  Google Scholar 

  • Tscharntke T, Thiessen S, Dolch R, Boland W. 2001. Herbivory, induced resistance, and interplant signal transfer in Alnus glutinosa. Biochem Systematics Ecol 29:1025–1047

    Article  CAS  Google Scholar 

  • Tsuchisaka A, Theologis A. 2004a. Heterodimeric interactions among the 1-amino-cyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family. Proc Natl Acad Sci USA 101:2275–2280

    Article  CAS  Google Scholar 

  • Tsuchisaka A, Theologis A. 2004b. Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol 136:2982–3000

    Article  CAS  Google Scholar 

  • Tsuji J, Jackson EP, Gage DA, Hammerschmidt R, Somerville SC. 1992. Phytoalexin accumulation in Arabidopsis thaliana during the hypersensitive reaction to Pseudomonas syringae pv syringae. Plant Physiol 98:1304–1309

    Article  PubMed  CAS  Google Scholar 

  • Turner JG, Ellis C, Devoto A. 2002. The jasmonate signal pathway. Plant Cell 14(Suppl):S153–S164

    PubMed  CAS  Google Scholar 

  • Valls M, Genin S, Boucher C. 2006. Integrated regulation of the type III secretion system and other virulence determinants in Ralstonia solanacearum. PLoS Pathog 25:798–807

    Google Scholar 

  • van Loon LC, Bakker PAHM, Pieterse CMJ. 1998. Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • van Loon LC, van Strein EA. 1999. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97

    Article  Google Scholar 

  • van Loon LC, Geraats BP, Linthorst HJ. 2006. Ethylene as a modulator of disease resistance in plants. Trends Plant Sci 11:184–191

    Article  PubMed  CAS  Google Scholar 

  • Van Zhong G, Burns JK. 2003. Profiling ethylene-regulated gene expression in Arabidopsis thaliana by microarray analysis. Plant Mol Biol 53:117–131

    Article  PubMed  CAS  Google Scholar 

  • VanderMolen GE, Labavitch JM, Strand LL, DeVay JE. 1983. Pathogen-induced vascular gels: Ethylene as a host intermediate. Physiol Plant 59:573–580

    Article  CAS  Google Scholar 

  • VanderMolen GE, Labavitch JM, DeVay JE. 1986. Fusarium-induced vascular gels from banana roots—a partial chemical characterization. Physiol Plant 66:298–302

    Article  CAS  Google Scholar 

  • Veereshlingam H, Haynes JG, Penmetsa RV, Cook DR, Sherrier DJ, et al. 2004. nip, a symbiotic Medicago truncatula mutant that forms root nodules with aberrant infection threads and plant defense-like response. Plant Physiol 136:3692–3702

    Article  PubMed  CAS  Google Scholar 

  • Verberne MC, Hoekstra J, Bol JF, Linthorst HJ. 2003. Signaling of systemic acquired resistance in tobacco depends on ethylene perception. Plant J 35:27–32

    Article  PubMed  CAS  Google Scholar 

  • Veselov D, Langhans M, Hartung W, Aloni R, Feussner I, et al. 2003. Development of Agrobacterium tumefaciens C58-induced plant tumors and impact on host shoots are controlled by a cascade of jasmonic acid, auxin, cytokinin, ethylene and abscisic acid. Planta 216:512–522

    PubMed  CAS  Google Scholar 

  • Wang KL, Li H, Ecker JR. 2002. Ethylene biosynthesis and signaling networks. Plant Cell 14(Suppl):S131–S151

    PubMed  CAS  Google Scholar 

  • Wang KL, Yoshida H, Lurin C, Ecker JR. 2004. Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 428:945–950

    Article  PubMed  CAS  Google Scholar 

  • Weber H, Bernhardt A, Dieterle M, Hano P, Mutlu A, et al. 2005. Arabidopsis AtCUL3a and AtCUL3b form complexes with members of the BTB/POZ-MATH protein family. Plant Physiol 137:83–93

    Article  PubMed  CAS  Google Scholar 

  • Weingart H, Ullrich H, Geider K, Volksch B. 2001. The role of ethylene production in virulence of Pseudomonas syringae pvs. glycinea and phaseolicola. Phytopathology 91:511–518

    Article  CAS  PubMed  Google Scholar 

  • Winz RA, Baldwin IT. 2001. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. IV. Insect-induced ethylene reduces jasmonate-induced nicotine accumulation by regulating putrescine N-methyltransferase transcripts. Plant Physiol 125:2189–2202

    Article  PubMed  CAS  Google Scholar 

  • Wubben MJ 2nd, Su H, Rodermel SR, Baum TJ. 2001. Susceptibility to the sugar beet cyst nematode is modulated by ethylene signal transduction in Arabidopsis thaliana. Mol Plant Microbe Interact 14:1206–1212

    Article  PubMed  CAS  Google Scholar 

  • Wubben MJ 2nd, Rodermel SR, Baum TJ. 2004. Mutation of a UDP-glucose-4-epimerase alters nematode susceptibility and ethylene responses in Arabidopsis roots. Plant J 40:712–724

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Chang P, Liu D, Narasimhan ML, Raghothama KG, et al. 1994. Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6:1077–1085

    Article  PubMed  CAS  Google Scholar 

  • Xu P, Narasimhan ML, Samson T, Coca MA, Huh GH, et al. 1998. A nitrilase-like protein interacts with GCC box DNA-binding proteins involved in ethylene and defense responses. Plant Physiol 118:867–874

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Hu X, Neill SJ, Fang J, Cai W. 2005. Fungal elicitor induces singlet oxygen generation, ethylene release and saponin synthesis in cultured cells of Panax ginseng C. A. Meyer. Plant Cell Physiol 46:947–954

    Article  PubMed  CAS  Google Scholar 

  • Yamagami T, Tsuchisaka A, Yamada K, Haddon WF, Harden LA, et al. 2003. Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J Biol Chem 278:49102–49112

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, Suzuki K, Shinshi H. 1999. Elicitor-responsive, ethylene-independent activation of GCC box-mediated transcription that is regulated by both protein phosphorylation and dephosphorylation in cultured tobacco cells. Plant J 20:571–579

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki K, Kigawa T, Inoue M, Yamasaki T, Yabuki T, et al. 2005. Solution structure of the major DNA-binding domain of Arabidopsis thaliana ethylene-insensitive3-like3. J Mol Biol 348:253–264

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Tian L, Latoszek-Green M, Brown D, Wu K. 2005. Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol Biol 58:585–596

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Wang KL, Chang CM, Mori K, Uchida E, et al. 2006. The ACC synthase TOE sequence is required for interaction with ETO1 family proteins and destabilization of target proteins. Plant Mol Biol 62:427–437

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Zheng SH, Fujita K, Sakai K. 2004. Jasmonate and ethylene signalling and their interaction are integral parts of the elicitor signalling pathway leading to beta-thujaplicin biosynthesis in Cupressus lusitanica cell cultures. J Exp Bot 55:1003–1012

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R. 2005. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Tang X, Martin GB. 1997. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J 16:3207–3218

    Article  PubMed  CAS  Google Scholar 

  • Zhou C, Zhang L, Duan J, Miki B, Wu K. 2005. HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell 17:1196–1204

    Article  PubMed  CAS  Google Scholar 

  • Zhu-Salzman K, Salzman RA, Koiwa H, Murdock LL, Bressan RA, et al. 1998. Ethylene negatively regulates local expression of plant defense lectin genes. Physiol Plant 104:365–372

    Article  CAS  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W. 2004. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by grants to R.S. from the Spanish Ministerio de Ciencia y Tecnología (BIO2001-0567, BIO2004-02502, and GEN2003-20218-C02-02), and from the Comunidad de Madrid (07G/0048/2000, 07B/0044/2002, and GR/SAL/0674/2004).

B.A. has been supported by postdoctoral fellowships from the EU (CRISP project HPRN-CT-2000-00093) and from the Spanish Ministerio de Educación y Ciencia (GEN2003-20218-C02-02).

J-M.C. has been supported by postdoctoral contract associated with BIO2004-02502 funded by Spanish Ministerio de Educación y Ciencia.

I.R-S. has been supported by postdoctoral I3P fellowship funded by Consejo Superior de Investigaciones Cientificas (CSIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Solano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adie, B., Chico, J.M., Rubio-Somoza, I. et al. Modulation of Plant Defenses by Ethylene. J Plant Growth Regul 26, 160–177 (2007). https://doi.org/10.1007/s00344-007-0012-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-007-0012-6

Keywords

Navigation