Skip to main content
Log in

High-sensitivity in situ QCLAS-based ammonia concentration sensor for high-temperature applications

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A novel quantum cascade laser (QCL) absorption sensor is presented for high-sensitivity in situ measurements of ammonia (\(\hbox {NH}_3\)) in high-temperature environments, using scanned wavelength modulation spectroscopy (WMS) with first-harmonic-normalized second-harmonic detection (scanned WMS-2f/1f) to neutralize the effect of non-absorption losses in the harsh environment. The sensor utilized the sQ(9,9) transition of the fundamental symmetric stretch band of \(\hbox {NH}_3\) at \(10.39\,{\upmu }\hbox {m}\) and was sinusoidally modulated at 10 kHz and scanned across the peak of the absorption feature at 50 Hz, leading to a detection bandwidth of 100 Hz. A novel technique was used to select an optimal WMS modulation depth parameter that reduced the sensor’s sensitivity to spectral interference from \(\hbox {H}_2\hbox {O}\) and \(\hbox {CO}_2\) without significantly sacrificing signal-to-noise ratio. The sensor performance was validated by measuring known concentrations of \(\hbox {NH}_3\) in a flowing gas cell. The sensor was then demonstrated in a laboratory-scale methane-air burner seeded with \(\hbox {NH}_3\), achieving a demonstrated detection limit of 2.8 ± 0.26 ppm \(\hbox {NH}_3\) by mole at a path length of 179 cm, equivalence ratio of 0.6, pressure of 1 atm, and temperatures of up to 600 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Shelef, Chem. Rev. 95(1), 209–225 (1995)

    Article  Google Scholar 

  2. D.C. Mussatti, Technical report (2002)

  3. K.A. Hossain, M.N. Mohd-Jaafar, K.B. Appalanidu, F.N. Ani, Environ. Technol. 26(3), 251–260 (2005)

    Article  Google Scholar 

  4. R.K. Hanson, Proc. Combust. Inst. 33(1), 1–40 (2011)

    Article  Google Scholar 

  5. M.E. Webber, D.S. Baer, R.K. Hanson, Appl. Opt. 40(12), 2031–2042 (2001)

    Article  ADS  Google Scholar 

  6. X. Chao, J.B. Jeffries, R.K. Hanson, Proc. Combust. Inst. 34(2), 3583–3592 (2013)

    Article  Google Scholar 

  7. F. Stritzke, O. Diemel, S. Wagner, Appl. Phys. B Lasers Opt. 119(1), 143–152 (2015)

    Article  ADS  Google Scholar 

  8. R. Lewicki, A. Kosterev, D.M. Thomazy, L. Gong, R. Griffin, F. Tittel, in Laser Applications to Chemical, Security and Environmental Analysis (Optical Society of America, 2010)

  9. D.J. Miller, K. Sun, L. Tao, M.A. Khan, M.A. Zondlo, Atmos. Meas. Tech. 7(1), 81–93 (2014)

    Article  Google Scholar 

  10. J.D. Whitehead, I.D. Longley, M.W. Gallagher, Water Air Soil Pollut. 183(1–4), 317–329 (2007)

    Article  Google Scholar 

  11. K. Owen, A. Farooq, Appl. Phys. B 116(2), 371–383 (2013)

    Article  ADS  Google Scholar 

  12. Y.A. Bakhirkin, A.A. Kosterev, G. Wysocki, F.K. Tittel, T.H. Risby, J.D. Bruno, in Laser Applications to Chemical, Security and Environmental Analysis (Optical Society of America, 2008)

  13. J. Manne, O. Sukhorukov, W. Jäger, J. Tulip, Appl. Opt. 45(36), 9230–9237 (2006)

    Article  ADS  Google Scholar 

  14. J.A. Silver, D.S. Bomse, A.C. Stanton, Appl. Opt. 30(12), 1505–1511 (1991)

    Article  ADS  Google Scholar 

  15. R. Sur, R.M. Spearrin, W.Y. Peng, C.L. Strand, J.B. Jeffries, G.M. Enns, R.K. Hanson, J. Quant. Spectrosc. Radiat. Transf. 175, 90–99 (2016)

    Article  ADS  Google Scholar 

  16. U. Platt, J. Stutz, in Differential Optical Absorption Spectroscopy (Springer, Berlin, Heidelberg, 2008)

    Google Scholar 

  17. P. Kluczynski, O. Axner, Appl. Opt. 38(27), 5803–5815 (1999)

    Article  ADS  Google Scholar 

  18. R.K. Hanson, R.M. Spearrin, C.S. Goldenstein, in Spectroscopy and Optical Diagnostics for Gases, 1st edn. (Springer, New York, 2015)

    Google Scholar 

  19. D.S. Bomse, A.C. Stanton, J.A. Silver, Appl. Opt. 31(6), 718–731 (1992)

    Article  ADS  Google Scholar 

  20. J. Reid, D. Labrie, Appl. Phys. B 26(3), 203–210 (1981)

    Article  ADS  Google Scholar 

  21. G.B. Rieker, J.B. Jeffries, R.K. Hanson, Appl. Opt. 48(29), 5546–5560 (2009)

    Article  ADS  Google Scholar 

  22. C.S. Goldenstein, C.L. Strand, I.A. Schultz, K. Sun, J.B. Jeffries, R.K. Hanson, Appl. Opt. 53(3), 356–367 (2014)

    Article  ADS  Google Scholar 

  23. K. Sun, X. Chao, R. Sur, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Meas. Sci. Technol. 24(12), 125203 (2013)

    Article  ADS  Google Scholar 

  24. L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.M. Flaud, R.R. Gamache, J.J. Harrison, J.M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.a Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, aV Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.G. Tyuterev, G. Wagner, J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013)

    Article  ADS  Google Scholar 

  25. L. Rothman, I. Gordon, R. Barber, H. Dothe, R. Gamache, A. Goldman, V. Perevalov, S. Tashkun, J. Tennyson, J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2010)

    Article  ADS  Google Scholar 

  26. M.B. Filho, M.G. da Silva, M.S. Sthel, D.U. Schramm, H. Vargas, A. Miklós, P. Hess, Appl. Opt. 45(20), 4966–4971 (2006)

    Article  ADS  Google Scholar 

  27. J. Manne, W. Jäger, J. Tulip, Appl. Phys. B Lasers Opt. 94(2), 337–344 (2009)

    Article  ADS  Google Scholar 

  28. T. Demayo, M. Miyasato, G. Samuelsen, Symp. Int. Combust. 27(1), 1283–1291 (1998)

    Article  Google Scholar 

  29. P.E. Yelvington, S.C. Herndon, J.C. Wormhoudt, J.T. Jayne, R.C. Miake-Lye, W.B. Knighton, C. Wey, J. Propuls. Power 23(5), 912–918 (2007)

    Article  Google Scholar 

  30. R. Sur, K. Sun, J.B. Jeffries, R.K. Hanson, Appl. Phys. B Lasers Opt. 115(1), 9–24 (2014)

    Article  ADS  Google Scholar 

  31. R. Kee, F. Rupley, J. Miller, Technical report, sep (1989)

  32. H. Ku, J. Res. Natl. Bur. Stand. Sect. C Eng. Instrum. 70C(4), 263–273 (1966)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Y. Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, W.Y., Sur, R., Strand, C.L. et al. High-sensitivity in situ QCLAS-based ammonia concentration sensor for high-temperature applications. Appl. Phys. B 122, 188 (2016). https://doi.org/10.1007/s00340-016-6464-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6464-2

Keywords

Navigation