Skip to main content
Log in

Analysis of laser absorption gas sensors employing scanned-wavelength modulation spectroscopy with 1f-phase detection

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The recently introduced wavelength-modulation spectroscopy with 1f-phase detection (WMS-\(\theta _{1f}\)) technique showed promising results with potentially improved measurement precision over the popular 1f-normalized WMS-nf (WMS-nf/1f) technique. Like WMS-nf/1f, WMS-\(\theta _{1f}\) enjoys the typical benefits of WMS methods, including low-frequency noise rejection, correction for non-absorbing losses, and insensitivity to the broadband absorption spectra of interfering species. In this work, we performed a detailed analysis of the spectrally resolved scanned-wavelength WMS-\(\theta _{1f}\) measurement technique and its direct comparison against the expected performance of scanned-wavelength WMS-nf/1f and scanned-wavelength direct-absorption spectroscopy (SDAS) measurements. This simulation-based analysis identified specific operating regimes in which the performance of WMS-\(\theta _{1f}\) measurements in terms of accuracy is expected to be greater than the performance of WMS-nf/1f or SDAS. Additionally, improved guidelines for the optimal selection of laser-tuning parameters, including an explicit optimization of the optical scan depth parameter, were developed. Experiments with a CO2 static cell perturbed by a high-speed air jet corroborated the simulation-based findings. Finally, a practical demonstration of a WMS-\(\theta _{1f}\) sensor for measuring temperature and H2O mole fraction in the exhaust of a CH4/air flat-flame burner was presented, with the results confirming model predictions of the superior precision of WMS-\(\theta _{1f}\) relative to WMS-nf/1f and SDAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. R.K. Hanson, Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems. Proc. Combust. Inst. 33(1), 1–40 (2011). https://doi.org/10.1016/j.proci.2010.09.007

    Article  Google Scholar 

  2. C.S. Goldenstein, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Infrared laser-absorption sensing for combustion flows. Prog. Energy Combust. Sci. 60, 132–176 (2016). https://doi.org/10.1016/j.pecs.2016.12.002

    Article  Google Scholar 

  3. M. Lackner, Tunable diode laser absorption spectroscopy for gas sensing in the process industries—a review. Rev. Chem. Eng. (2007). https://doi.org/10.1515/REVCE.2007.23.2.65

    Article  Google Scholar 

  4. J. Röpcke, G. Lombardi, A. Rousseau, P.B. Davies, Application of mid-infrared tuneable diode laser absorption spectroscopy to plasma diagnostics: a review. Plasma Sour. Sci. Technol. 15(4), S148 (2006)

    Article  ADS  Google Scholar 

  5. Z. Wang, P. Fu, X. Chao, Laser absorption sensing systems: challenges, modeling, and design optimization. Appl. Sci. (2019). https://doi.org/10.3390/app9132723

    Article  Google Scholar 

  6. G. C. Mathews, C.S. Goldenstein, Wavelength-modulation spectroscopy for MHz thermometry and H2O sensing in combustion gases of energetic materials. AIAA Scitech Forum, pp. 1–8 (2019)

  7. R.M. Spearrin, C.S. Goldenstein, I.A. Schultz, J.B. Jeffries, R.K. Hanson, Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy. Appl. Phys. B Lasers Opt. 117(2), 689–698 (2014). https://doi.org/10.1007/s00340-014-5884-0

    Article  Google Scholar 

  8. C.S. Goldenstein, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Infrared laser absorption sensors for multiple performance parameters in a detonation combustor. Proc. Combust. Inst. 35(3), 3739–3747 (2014). https://doi.org/10.1016/j.proci.2014.05.027

    Article  Google Scholar 

  9. D.D. Lee, F.A. Bendana, S.A. Schumaker, R.M. Spearrin, Wavelength modulation spectroscopy near 5 um for carbon monoxide sensing in a high-pressure kerosene-fueled liquid rocket combustor. Appl. Phys. B Lasers Opt. (2018). https://doi.org/10.1007/s00340-018-6945-6

    Article  Google Scholar 

  10. C. A. Almodovar, D. Salazar, C. L. Strand, R. K. Hanson, R. G. Wright, C. M. Brophy, TDLAS measurements of the underexpanded exhaust plume from a solid propellant gas generator. AIAA Scitech Forum, pp. 1–10 (2019). https://arc.aiaa.org/doi/10.2514/6.2019-0028

  11. W.Y. Peng, R. Sur, C.L. Strand, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, High-sensitivity in situ QCLAS-based ammonia concentration sensor for high-temperature applications. Appl. Phys. B Lasers Opt. 122, 188 (2016). https://doi.org/10.1007/s00340-016-6464-2

    Article  ADS  Google Scholar 

  12. W.Y. Peng, S.J. Cassady, C.L. Strand, C.S. Goldenstein, R.M. Spearrin, C.M. Brophy, J.B. Jeffries, R.K. Hanson, Single-ended mid-infrared laser-absorption sensor for time-resolved measurements of water concentration and temperature within the annulus of a rotating detonation engine. Proc. Combust. Inst. 37(2), 1435–1443 (2019). https://doi.org/10.1016/j.proci.2018.05.021

    Article  Google Scholar 

  13. W.Y. Peng, Y. Wang, S.J. Cassady, C.L. Strand, R.K. Hanson, Single-ended sensor for thermometry and speciation in shock tubes using native surfaces. IEEE Sens. J. 19(13), 4954–4961 (2019). https://doi.org/10.1109/JSEN.2019.2903989

    Article  ADS  Google Scholar 

  14. C. Yang, L. Mei, H. Deng, Z. Xu, B. Chen, R. Kan, Wavelength modulation spectroscopy by employing the first harmonic phase angle method. Opt. Express 27(9), 12137–12146 (2019). https://doi.org/10.1364/OE.27.012137

    Article  ADS  Google Scholar 

  15. A. Upadhyay, M. Lengden, D. Wilson, G.S. Humphries, A.P. Crayford, D.G. Pugh, M.P. Johnson, G. Stewart, W. Johnstone, A new RAM normalized 1f-WMS technique for the measurement of gas parameters in harsh environments and a comparison with 2f/1f. IEEE Photon. J. 10(6), 1–11 (2018)

    Article  Google Scholar 

  16. C. S. Goldenstein, C. L. Strand, I. A. Schultz, K. Sun, J. B. Jeffries, R. K. Hanson, Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes. Appl. Opt. 53(3), 356–367 (2014).

    Article  ADS  Google Scholar 

  17. G.B. Rieker, J.B. Jeffries, R.K. Hanson, Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments. Appl. Opt. 48(29), 5546–5560 (2009). https://doi.org/10.1364/AO.48.005546

    Article  ADS  Google Scholar 

  18. J. Reid, D. Labrie, Second-harmonic detection with tunable diode lasers—comparison of experiment and theory. Appl. Phys. B Lasers Opt. 26(3), 203–210 (1981). https://doi.org/10.1007/BF00692448

    Article  ADS  Google Scholar 

  19. P. Kluczynski, O. Axner, Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals. Appl. Opt. 38(27), 5803–5815 (1999)

    Article  ADS  Google Scholar 

  20. L.C. Philippe, R.K. Hanson, Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows. Appl. Opt. 32(30), 6090–6103 (1993)

    Article  ADS  Google Scholar 

  21. C. L. Strand, Scanned wavelength modulation absorption spectroscopy with application to hypersonic impulse flow facilities, Ph.D. dissertation, Stanford University (2014)

  22. R.K. Hanson, R.M. Spearrin, C.S. Goldenstein, Spectroscopy and optical diagnostics for Gases, 1st edn. (Springer, New York, 2015)

    Google Scholar 

  23. K. Sun, X. Chao, R. Sur, C. S. Goldenstein, J. B. Jeffries, R. K. Hanson, Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers. Meas. Sci. Technol. 24(12), 1–12 (2013)

    Google Scholar 

  24. H. Li, G.B. Rieker, X. Liu, J.B. Jeffries, R.K. Hanson, Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases. Appl. Opt. 45(5), 1052–1061 (2006)

    Article  ADS  Google Scholar 

  25. E. Polak, G. Ribiere, Note sur la convergence de méthodes de directions conjuguées. Revue française d’informatique et de recherche opérationnelle 3(16), 35–43 (1969)

    MATH  Google Scholar 

  26. K. Levenberg, A method for the solution of certain non-linear problems in least squares. Quart. Appl. Math. 2(2), 164–168 (1944)

    Article  MathSciNet  Google Scholar 

  27. D.W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)

    Article  MathSciNet  Google Scholar 

  28. W. Wei, W.Y. Peng, Y. Wang, R. Choudhary, S. Wang, J. Shao, R.K. Hanson, Demonstration of non-absorbing interference rejection using wavelength modulation spectroscopy in high-pressure shock tubes. Appl. Phys. B Lasers Opt. 125(9), 1–10 (2019). https://doi.org/10.1007/s00340-018-7118-3

    Article  ADS  Google Scholar 

  29. R. Sur, K. Sun, J.B. Jeffries, J.G. Socha, R.K. Hanson, Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4 and H2O in a high-pressure engineering-scale transport-reactor coal gasifier. Fuel 150, 102–111 (2015). https://doi.org/10.1016/j.fuel.2015.02.003

    Article  Google Scholar 

  30. W.S. Kendal, B. Jørgensen, Tweedie convergence: a mathematical basis for Taylor’s power law, 1/f noise, and multifractality. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 84(6), 1–10 (2011)

    Article  Google Scholar 

  31. H. Winarto, M. Davis, Fluctuations of density, pressure and temperature in a turbulent mixing region. Proc. R. Soc. Lond. Series A Math. Phys. Sci. 395(1809), 203–228 (1984)

    ADS  Google Scholar 

  32. S. J. Cassady, W. Y. Peng, C. L. Strand, J. B. Jeffries, R. K. Hanson, D. F. Dausen, C. M. Brophy, A single-ended, mid-IR sensor for time-resolved temperature and species measurements in a hydrogen/ethylene-fueled rotating detonation engine. AIAA SciTech Forum, pp. 1–8 (2019)

  33. C. S. Goldenstein, R. K. Hanson, Diode-laser measurements of linestrength and temperature-dependent lineshape parameters for H2O transitions near 1.4\(\mu\)m using Voigt, Rautian, Galatry, and speed-dependent Voigt profiles. J. Quant. Spectrosc. Radiat. Transfer. 152, 127–139 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of Naval Research (monitor: Dr. S. Martens) and Innovative Scientific Solutions, Inc. (monitor: Dr. J. Hoke) under Grant no. N00014-15-P-1121. W.Y. Peng was supported by the National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a awarded by the Department of Defense. The authors would like to thank S.J. Cassady of Stanford University for helpful discussions and recommendations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Yu Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, W., Strand, C.L. & Hanson, R.K. Analysis of laser absorption gas sensors employing scanned-wavelength modulation spectroscopy with 1f-phase detection. Appl. Phys. B 126, 17 (2020). https://doi.org/10.1007/s00340-019-7369-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7369-7

Navigation