Skip to main content
Log in

Sensitive detection of CO2 concentration and temperature for hot gases using quantum-cascade laser absorption spectroscopy near 4.2 μm

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Mid-infrared quantum-cascade laser (QCL) absorption spectroscopy of CO2 near 4.2 μm has been developed for measurement of temperature and concentration in hot gases. With stronger absorption line-strengths than transitions near 1.5, 2.0, and 2.7 μm used previously, the fundamental band (0001–0000) of CO2 near 4.2 μm provides greatly enhanced sensitivity and accuracy to sense CO2 in high-temperature gases. Line R(74) and line R(96) are chosen as optimum pair for sensitive temperature measurements due to their high-temperature sensitivity, equal signal-to-noise ratio (SNR), weak interference of H2O transitions, as well as relatively strong line-strengths in high temperature and weak absorption in room temperature. The high-resolution absorption spectrum of the far wings of the R-branch (R56–R100) in the fundamental vibrational band of CO2 is measured in a heated cell over the range 2,384–2,396 cm−1 at different temperatures from 700 to 1,200 K. Taking three factors into consideration, including SNR, concentration detectability, and uncertainty sensitivity, the absorption line R(74) is selected to calculate CO2 concentration. The tunable QCL absorption sensor is validated in mixtures of CO2 and N2 in a static cell for temperature range of 700–1,200 K, achieving an accuracy of ±6 K for temperature and ±5 % for concentration measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Kohse-Höinghaus, Laser techniques for the quantitative detection of reactive intermediates in combustion systems. Prog. Energy Combust. Sci. 20, 203 (1994)

    Article  Google Scholar 

  2. N.M. Laurendeau, Temperature measurements by light-scattering methods. Prog. Energy Combust. Sci. 14, 147 (1988)

    Article  Google Scholar 

  3. F. Beyrau, T. Seeger, A. Malarski, A. Leipertz, Determination of temperatures and fuel/air ratios in an ethene–air flame by dual-pump CARS. J. Raman Spectrosc. 34, 946 (2003)

    Article  ADS  Google Scholar 

  4. J. Luque, P.A. Berg, J.B. Jeffries, G.P. Smith, D.R. Crosley, J.J. Scherer, Cavity ring-down absorption and laser-induced fluorescence for quantitative measurements of CH radicals in low-pressure flames. Appl. Phys. B 78, 93 (2004)

    Article  ADS  Google Scholar 

  5. T. Werblinski, S.R. Engel, R. Engelbrecht, L. Zigan, S. Will, Temperature and multi-species measurements by supercontinuum absorption spectroscopy for IC engine applications. Opt. Express 21, 13656 (2013)

    Article  ADS  Google Scholar 

  6. L.A. Kranendonk, X. An, A.W. Caswell, R.E. Herold, S.T. Sanders, R. Huber, J.G. Fujimoto, Y. Okura, Y. Urata, High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy. Opt. Express 15, 15115 (2007)

    Article  ADS  Google Scholar 

  7. D.S. Baer, R.K. Hanson, M.E. Newfield, N.K.L.M. Gopaul, Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements. Opt. Lett. 19, 1900 (1994)

    Article  ADS  Google Scholar 

  8. R.M. Mihalcea, D.S. Baer, R.K. Hanson, Diode laser sensor for measurements of CO, CO2, and CH4 in combustion flows. Appl. Opt. 36, 8745 (1997)

    Article  ADS  Google Scholar 

  9. M.E. Webber, J. Wang, S.T. Sanders, D.S. Baer, R.K. Hanson, In situ combustion measurements of CO, CO2, H2O and temperature using diode laser absorption sensors. Proc. Combust. Inst. 28, 407 (2000)

    Article  Google Scholar 

  10. H. Teichert, T. Fernholz, V. Ebert, Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers. Appl. Opt. 42, 2043 (2003)

    Article  ADS  Google Scholar 

  11. K. Sun, R. Sur, X. Chao, J.B. Jeffries, R.K. Hanson, R.J. Pummill, K.J. Whitty, TDL absorption sensors for gas temperature and concentrations in a high-pressure entrained-flow coal gasifier. Proc. Combust. Inst. 34, 3593 (2013)

    Article  Google Scholar 

  12. Q. Huang, F. Wang, H. Zhang, J. Yan, M. Ni, K. Cen, In-situ CO measurement of gas and oil combustion flame using near infrared tunable diode laser with direct and modulated absorption signals. Opt. Commun. 306, 99 (2013)

    Article  ADS  Google Scholar 

  13. R.M. Mihalcea, D.S. Baer, R.K. Hanson, Diode-laser absorption measurements of CO2 near 2.0 μm at elevated temperatures. Appl. Opt. 37, 8341 (1998)

    Article  ADS  Google Scholar 

  14. M.E. Webber, S. Kim, S.T. Sanders, D.S. Baer, In situ combustion measurements of CO2 by use of a distributed-feedback diode-laser sensor near 2.0 μm. Appl. Opt. 40, 821 (2001)

    Article  ADS  Google Scholar 

  15. A. Farooq, J.B. Jeffries, R.K. Hanson, Concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 μm. Appl. Phys. B 90, 619 (2008)

    Article  ADS  Google Scholar 

  16. A. Farooq, J.B. Jeffries, R.K. Hanson, Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7 μm. Appl. Phys. B 96, 161 (2009)

    Article  ADS  Google Scholar 

  17. R.M. Spearrin, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Fiber-coupled 2.7 μm laser absorption sensor for CO2 in harsh combustion environments. Meas. Sci. Technol. 24, 055107 (2013)

    Article  ADS  Google Scholar 

  18. J. Vanderover, M.A. Oehlschlaeger, A mid-infrared scanned-wavelength laser absorption sensor for carbon monoxide and temperature measurements from 900 to 4000 K. Appl. Phys. B 99, 353 (2010)

    Article  ADS  Google Scholar 

  19. W. Ren, A. Farooq, D.F. Davidson, R.K. Hanson, CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm. Appl. Phys. B 107, 849 (2012)

    Article  ADS  Google Scholar 

  20. R.M. Spearrin, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Quantum cascade laser absorption sensor for carbon monoxide in high-pressure gases using wavelength modulation spectroscopy. Appl. Opt. 53, 1938 (2014)

    Article  ADS  Google Scholar 

  21. A.K. Das, M. Uddi, C. Sung, Two-line thermometry and H2O measurement for reactive mixtures in rapid compression machine near 7.6 μm. Combust. Flame 159, 3493 (2012)

    Article  Google Scholar 

  22. X. Chao, J.B. Jeffries, R.K. Hanson, Wavelength-modulation-spectroscopy for real-time, in situ NO detection in combustion gases with a 5.2 μm quantum laser. Appl. Phys. B 106, 987 (2012)

    Article  ADS  Google Scholar 

  23. X. Chao, J.B. Jeffries, R.K. Hanson, In situ absorption sensor for NO in combustion gases with a 5.2 μm quantum-cascade laser. Proc. Combust. Inst. 33, 725 (2011)

    Article  Google Scholar 

  24. R.M. Spearrin, W. Ren, J.B. Jeffries, R.K. Hanson, Multi-band infrared CO2 absorption sensor for sensitive temperature and species measurements in high-temperature gases. Appl. Phys. B (2014). doi:10.1007/s00340-014-5772-7

    Google Scholar 

  25. L. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.-M. Flaud, R.R. Gamache, J.J. Harrison, J.-M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. LeRoy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.G. Tyuterev, G. Wagner, The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 130, 4 (2013)

    Article  ADS  Google Scholar 

  26. X. Liu, J.B. Jeffries, R.K. Hanson, K.M. Hinckley, M.A. Woodmansee, Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature. Appl. Phys. B 82, 469 (2006)

    Article  ADS  Google Scholar 

  27. X. Zhou, X. Liu, J.B. Jeffries, R.K. Hanson, Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser. Meas. Sci. Technol. 14, 1459 (2003)

    Article  ADS  Google Scholar 

  28. X. Zhou, J.B. Jeffries, R.K. Hanson, Development of a fast temperature sensor for combustion gases using a single tunable diode laser. Appl. Phys. B 81, 469 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faquan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Li, F., Cheng, X. et al. Sensitive detection of CO2 concentration and temperature for hot gases using quantum-cascade laser absorption spectroscopy near 4.2 μm. Appl. Phys. B 117, 659–666 (2014). https://doi.org/10.1007/s00340-014-5880-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5880-4

Keywords

Navigation