Skip to main content
Log in

A novel Ag nanoparticles/TiO2 nanowires-based photodetector and glucose concentration detection

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A unique vapour transport cum glancing angle deposition (VT-GLAD) technique was employed to fabricate titanium dioxide (TiO2) nanowires (NWs). The NWs were grown and assembled to form the clusters. Both brookite (412) and rutile (002) phase for TiO2 was obtained from X-ray diffraction (XRD). The d spacing of ~ 1.37 Å was calculated from the transmission electron microscopy (TEM) of TiO2 NWs, which corresponds to (002) crystal plane. The silver (Ag) nanoparticles (NPs) on TiO2 NWs were grown using thermal evaporation cum GLAD technique. The presence of Ag NPs on the TiO2 NWs enhanced the photoconduction as compared to bare TiO2 NWs device. The maximum photosensitivity of the Ag NPs/TiO2 NWs based device was recorded ~ 1.6 times compared to the bare TiO2 NWs based device at − 2.5 V. The Ag NPs containing device was highly UV sensitive and maximum responsivity for the device was calculated to be ~ 2.3 A/W at 370 nm. The device also possessed high responsivity rejection (RR) ratio of ~ 6.5 between UV (370 nm) and visible (450 nm) light. The Ag NPs decorated TiO2 NWs based detector also showed response to white light. The different concentration of glucose into deionised (DI) water-based solution was detected precisely under white light illumination. The normalised (light/dark) detector current/glucose concentration value was decreased from ~ 0.19 to ~ 0.05 at − 2.5 V, with an increase in glucose concentration into the solution from 40 mg/dl to 200 mg/dl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. X. Wang, H. Wang, Y. Zhou, Y. Liu, B. Li, X. Zhou, H. Shen, Confined-space synthesis of single crystal TiO2 nanowires in atmospheric vessel at low temperature: a generalized approach. Sci. Rep. (2015). https://doi.org/10.1038/srep08129

    Article  Google Scholar 

  2. S. Chakrabartty, A. Mondal, A.K. Saha, Effect of annealing on optical, electrical and charge trapping properties of TiO2 nps arrays. J. Nanosci. Nanotechnol. 17, 1300–1306 (2017). https://doi.org/10.1166/jnn.2017.12653

    Article  Google Scholar 

  3. A. Mondal, A. Ganguly, A. Das, B. Choudhuri, R.K. Yadav, The Ag nanoparticles/Tio2 thin film device for enhanced photoconduction and role of traps. Plasmonics 10, 667–673 (2015). https://doi.org/10.1007/s11468-014-9852-7

    Article  Google Scholar 

  4. S. Mondal, A. Ghosh, M.R. Piton, J.P. Gomes, J.F. Felix, Y.G. Gobato, H.V.A. Galeti, B. Choudhuri, S.M.M.D. Dwivedi, M. Henini, A. Mondal, Investigation of optical and electrical properties of erbium-doped TiO2 thin films for photodetector applications. J. Mater. Sci.: Mater. Electron. 29, 19588–19600 (2018). https://doi.org/10.1007/s10854-018-0090-1

    Article  Google Scholar 

  5. R. Lahiri, A. Ghosh, B. Choudhuri, A. Mondal, Investigation on improved performance of Erbium doped TiO2 nanowire based UV detector. Mater. Res. Bull. 103, 259–267 (2018). https://doi.org/10.1016/j.materresbull.2018.03.024

    Article  Google Scholar 

  6. W. Lee, M. Hon, An ultraviolet photo-detector based on TiO2/water solid–liquid heterojunction. Appl. Phys. Lett. 99(25), 251102 (2011). https://doi.org/10.1063/1.3671076

    Article  ADS  Google Scholar 

  7. N.S. Ridhuan, K.A. Razak, Z. Lockman, Fabrication and characterization of glucose biosensors by using hydrothermally grown ZnO nanorods. Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-32127-5

    Article  Google Scholar 

  8. J. Tang, Y. Wang, J.L.P. Da, J. Genga, G. Zheng, Sensitive enzymatic glucose detection by TiO2 nanowire photoelectrochemical biosensors. J. Mater. Chem. A 2, 6153–6157 (2014). https://doi.org/10.1039/c3ta14173j

    Article  Google Scholar 

  9. A. Ganguly, A. Mondal, J. Dhar, N. Singh, S. Choudhury, Enhanced visible light absorption byTiO2 film patterned with Ag nanoparticles arrays. Physica E 54, 326–330 (2013). https://doi.org/10.1016/j.physe.2013.07.019

    Article  ADS  Google Scholar 

  10. S. Chakrabartty, A. Mondal, M. Sarkar, B. Choudhuri, A. Saha, A. Bhattacharyya, TiO2 nanoparticles arrays ultraviolet-a detector with Au Schottky contact. IEEE Photonics Technol. Lett. 26(11), 1065–1068 (2014). https://doi.org/10.1109/LPT.2014.2313181

    Article  ADS  Google Scholar 

  11. P. Chinnamuthu, A. Mondal, J.C. Dhar, N.K. Singh, Visible light detection using glancing angle deposited TiO2 nanowire arrays. Jpn. J. Appl. Phys. 54(6S1), 06FJ01 (2015). https://doi.org/10.7567/JJAP.54.06FJ01

    Article  Google Scholar 

  12. T. Ji, Q. Liu, R. Zou, Y. Zhang, L. Wang, L. Sang, M. Liao, Hu, Enhanced UV-visible light photodetectors with a TiO2/Si heterojunction using band engineering. J. Mater. Chem. C 5, 12848–12856 (2017). https://doi.org/10.1039/c7tc04811d

    Article  Google Scholar 

  13. P. Chinnamuthu, J.C. Dhar, A. Mondal, A. Bhattacharyya, N.K. Singh, Ultraviolet detection using TiO2 nanowire array with Ag Schottky contact. J. Phys. D Appl. Phys. 45(13), 135102 (2012). https://doi.org/10.1088/0022-3727/45/13/135102

    Article  ADS  Google Scholar 

  14. R. Lahiri, A. Mondal, Superior memory of Er doped TiO2 nanowire MOS capacitor. IEEE Electron. Device Lett. 39, 1856–1859 (2018). https://doi.org/10.1109/LED.2018.2874272

    Article  ADS  Google Scholar 

  15. T. Wang, H. Jiang, L. Wan, Q. Zhao, T. Jiang, B. Wang, S. Wang, Potential application of functional porous TiO2 nanoparticles in light-controlled drug release and targeted drug delivery. Acta Biomater. 13, 354–363 (2015). https://doi.org/10.1016/j.actbio.2014.11.010

    Article  Google Scholar 

  16. Q. Wang, J. Huang, H. Li, A. Zhao, Y. Wang, K. Zhang, H. Sun, Y. Lai, Recent advances on smart TiO2 nanotube platforms for sustainable drug delivery applications. Int. J. Nanomed. 12, 151–165 (2017). https://doi.org/10.2147/IJN.S117498

    Article  Google Scholar 

  17. Y. Yang, L. Jun, TiO2: a critical interfacial material for incorporating photosynthetic protein complexes and plasmonic nanoparticles into biophotovoltaics, Chapter 10, In: Book: application of titanium dioxide. (2017) https://doi.org/10.5772/intechopen.68744

  18. S. Haxha, J. Jhoja, Optical based noninvasive glucose monitoring sensor prototype. IEEE Photonics J. 8(6), 6805911 (2016). https://doi.org/10.1109/JPHOT.2016.2616491

    Article  Google Scholar 

  19. A. Ghosh, S.M.M.D. Dwivedi, H. Ghadi, P. Chinnamuthu, S. Chakrabarti, A. Mondal, Boosted UV sensitivity of er-doped in 2O3 thin films using plasmonic Ag nanoparticle-based surface texturing. Plasmonics 13, 1105–1113 (2018). https://doi.org/10.1007/s11468-017-0679-x

    Article  Google Scholar 

  20. S. Iravani, H. Korbekandi, S.V. Mirmohammadi, B. Zolfaghari, Synthesis of silver nanoparticles: chemical, physical and biological methods. Res. Pharm. Sciv. 9(6), PMC4326978 (2014). (PMID: 26339255)

    Google Scholar 

  21. C. Ngangbam, A. Mondal, B. Choudhuri, Efficient photon management with Ag nanoparticles coated TiO2 nanowire clusters for photodetector application. Electron. Mater, Lett. 11(5), 758–763 (2015). https://doi.org/10.1007/s13391-015-4207-x

    Article  ADS  Google Scholar 

  22. S.M.M.D. Dwivedi, A. Ghosh, H. Ghadi, P. Murkute, P. Chinnamuthu, S. Chakrabartty, S. Chakrabarti, S. Bhunia, A. Mondal, Oblique angle deposited InN quantum dots array for infrared detection. J. Alloy. Compd. 766, 297–304 (2018). https://doi.org/10.1002/2014GL060196

    Article  Google Scholar 

  23. K. Bhowmik, A. Mondal, Si NW network by Ag nanoparticle assisted etching and TiO2/Si NWs as photodetector. Electron. Mater. Lett. 11(2), 187-19 (2015). https://doi.org/10.1007/s13391-014-4243-y

    Article  ADS  Google Scholar 

  24. S. Mukherjee, D. Gall, Structure zone model for extreme shadowing conditions. Thin Solid Films 527, 158–163 (2013). https://doi.org/10.1016/j.tsf.2012.11.007

    Article  ADS  Google Scholar 

  25. S.M.M.D. Dwivedi, S. Chakrabartty, S. Bhunia, S. Chakrabarti, H. Ghadi, P. Murkute, V. Chavan, A. Mondal, Pine shaped InN nanostructure growth via vapour transport method by own shadowing and infrared detection. J. Alloy. Compd. 722, 872–877 (2017). https://doi.org/10.1016/j.jallcom.2017.06.184

    Article  Google Scholar 

  26. A. Ghosh, P. Murkute, R. Lahiri et al., GLAD synthesised erbium doped In2O3 nano-columns for UV detection. J. Mater. Sci 30, 12739 (2019). https://doi.org/10.1007/s10854-019-01638-w

    Article  Google Scholar 

  27. G. Wang, Y. Liu, C. Gao, L. Guo, M. Chi, K. Ijiro, M. Maeda, Y. Yin, Island growth in the seed-mediated overgrowth of monometallic colloidal nanostructures. Chem 3(4), 678–690 (2017). https://doi.org/10.1016/j.chempr.2017.08.004

    Article  Google Scholar 

  28. A. Barranco, A. Borras, A.R. Gonzalez-Elipe, A. Palmero, Perspectives on oblique angle deposition of thin films: from fundamentals to devices. Prog. Mater Sci. 76, 59–153 (2016). https://doi.org/10.1016/j.pmatsci.2015.06.003

    Article  Google Scholar 

  29. M. Ahamed, M.A.M. Khan, M.J. Akhtar, H.A. Alhadlaq, A. Alshamsan, Ag-doping regulates the cytotoxicity of TiO2 nanoparticles via oxidative stress in human cancer cells. Sci. Rep. 7, 17662 (2017). https://doi.org/10.1038/s41598-017-17559-9

    Article  ADS  Google Scholar 

  30. C.J. Lee, C.H. Won, J.H. Lee, S.H. Hahm, H. Park, GaN-based ultraviolet passive pixel sensor on silicon (111) substrate. Sensors 19(5), 1051 (2019). https://doi.org/10.3390/s19051051

    Article  Google Scholar 

  31. A. Ghosh, S.M.M.D. Dwivedi, S. Chakrabartty, A. Mondal, Detailed investigation of defect states in Erbium doped In2O3 thin film. Mater. Res. Bull. 99, 211–218 (2018). https://doi.org/10.1016/j.materresbull.2017.11.020

    Article  Google Scholar 

  32. F. Pellegrino, F. Sordello, M. Minella, C. Minero, V. Maurino, The role of surface texture on the photocatalytic H2 production on TiO2. Catalysts 9(32), 1–28 (2019). https://doi.org/10.3390/catal9010032

    Article  Google Scholar 

  33. S.M.M.D. Dwivedi, A. Dalal, A. Ghosh, P. Murkute, H. Ghadi, C. Ghosh, S. Chakrabarti, S. Bhunia, A. Mondal, InN nanowires based Near-Infrared broadband optical detector. IEEE Photonics Technol. Lett. (2019). https://doi.org/10.1109/LPT.2019.2936272

    Article  Google Scholar 

  34. J.C. Dhar, A. Mondal, N.K. Singh, K.K. Chattopadhyay, Enhanced photoemission from glancing angle deposited SiOx-TiO2 axial heterostructure nanowire arrays. J. Appl. Phys. 113(17), 174304 (2013). https://doi.org/10.1063/1.4803550

    Article  ADS  Google Scholar 

  35. D.F. Swineharf, The beer-lambert law. J. Chem. Educ. 39(7), 333–335 (1962). https://doi.org/10.1021/ed039p333

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge CSIR (03(1355)/16/EMR-II) for financial support. The authors acknowledge SAIF IIT Bombay for XRD measurement. The authors would also like to acknowledge COE, NIT Durgapur for FESEM facility. The authors gratefully acknowledge Professor Sudit Sekhar Mukhopadhyay, Department of Biotechnology, NIT Durgapur for providing glucose. The authors also appreciatively acknowledge Professor Kalyan Kumar Chattopadhyay, Department of Physics, Jadavpur University, Kolkata for providing the facility for TEM characterisation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniruddha Mondal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, C., Dhar Dwivedi, S.M.M., Ghosh, A. et al. A novel Ag nanoparticles/TiO2 nanowires-based photodetector and glucose concentration detection. Appl. Phys. A 125, 810 (2019). https://doi.org/10.1007/s00339-019-3108-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3108-5

Navigation