Skip to main content
Log in

GLAD synthesised erbium doped In2O3 nano-columns for UV detection

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We have reported the growth of In2O3 and Er-doped In2O3 (In2O3:Er) nano-columns (NCols) by e-beam cum GLAD techniques. An increase in the packing density of the NCols was observed with increasing Er doping. In2O3 shows a body-centred cubic crystal structure. Reduction in the crystallite size with Er-doping is observed. The bandgap of undoped In2O3 NCols (~ 3.50 eV) is increased to a maximum ~ 3.80 eV (0.48 at.% Er). The free carrier and trap concentration decrease from ~ 1.46 × 1017 to ~ 4.18 × 1015 cm−3 and ~ 2.78 × 1017 cm−3 to ~ 8.45 × 1015 cm−3 respectively for In2O3 NCol and 0.48 at.% In2O3:Er NCol control samples. The Au/0.48 at.% In2O3:Er/Si device showed higher sensitivity towards white light and 350 nm UV light compared to other devices under different applied powers of the xenon (Xe) lamp. The UV responsivity was observed to be ~ 2.2 times larger than the visible light. The temporal response of Au/0.48 at.% In2O3:Er/Si device also showed noteworthy development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W. Luo, Q. Weng, M. Long, P. Wang, F. Gong, H. Fang, M. Luo, W. Wang, Z. Wang, D. Zheng, W. Hu, X. Chen, W. Lu, Room-temperature single-photon detector based on single nanowire. Nano Lett. 18, 5439–5445 (2018). https://doi.org/10.1021/acs.nanolett.8b01795

    Article  CAS  Google Scholar 

  2. D. Wu, Z. Lou, Y. Wang, Z. Yao, T. Xu, Z. Shi, J. Xu, Y. Tian, X. Li, Y.H. Tsang, Photovoltaic high-performance broadband photodetector based on MoS2/Si nanowire array heterojunction. Sol. Energy Mater. Sol. Cells 182, 272–280 (2018). https://doi.org/10.1016/j.solmat.2018.03.017

    Article  CAS  Google Scholar 

  3. Z. Wang, R. Yu, C. Pan, Z. Li, J. Yang, F. Yi, Z.L. Wang, Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing. Nat. Commun. 6, 8401 (2015). https://doi.org/10.1038/ncomms9401

    Article  CAS  Google Scholar 

  4. P. Chinnamuthu, J.C. Dhar, A. Mondal, A. Bhattacharyya, N.K. Singh, Ultraviolet detection using TiO2 nanowire array with Ag Schottky contact. J. Phys. D Appl. Phys. 45, 135102 (2012). https://doi.org/10.1088/0022-3727/45/13/135102

    Article  CAS  Google Scholar 

  5. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455–459 (2005). https://doi.org/10.1038/nmat1387

    Article  CAS  Google Scholar 

  6. D. Liu, W.W. Lei, B. Zou, S.D. Yu, J. Hao, K. Wang, B.B. Liu, Q.L. Cui, G.T. Zou, High-pressure X-ray diffraction and Raman spectra study of indium oxide. J. Appl. Phys. 104, 083506 (2008). https://doi.org/10.1063/1.2999369

    Article  CAS  Google Scholar 

  7. O. Bierwagen, J.S. Speck, High electron mobility In2O3(001) and (111) thin films with nondegenerate electron concentration. Appl. Phys. Lett. 97, 072103 (2010). https://doi.org/10.1063/1.3480416

    Article  CAS  Google Scholar 

  8. T. Waitz, T. Wagner, T. Sauerwald, C. Kohl, M. Tiemann, Ordered mesoporous In2O3: synthesis by structure replication and application as a methane gas sensor. Adv. Funct. Mater. 19, 653–661 (2009). https://doi.org/10.1002/adfm.200801458

    Article  CAS  Google Scholar 

  9. Y. Temerk, H. Ibrahim, Fabrication of a novel electrochemical sensor based on Zn–In2O3 nanorods coated glassy carbon microspheres paste electrode for square wave voltammetric determination of neuroprotective hibifolin in biological fluids and in the flowers of hibiscus vitif. J. Electroanal. Chem. 782, 9–18 (2016). https://doi.org/10.1016/j.jelechem.2016.09.042

    Article  CAS  Google Scholar 

  10. F. Gong, Y. Gong, H. Liu, M. Zhang, Y. Zhang, F. Li, Porous In2O3 nanocuboids modified with Pd nanoparticles for chemical sensors. Sens. Actuators B Chem. 223, 384–391 (2016). https://doi.org/10.1016/j.snb.2015.09.053

    Article  CAS  Google Scholar 

  11. S.-Y. Kim, J. Kim, W.H. Cheong, I.J. Lee, H. Lee, H. Im, H. Kong, B. Bae, J. Park, Alcohol gas sensors capable of wireless detection using In2O3/Pt nanoparticles and Ag nanowires. Sens. Actuators B Chem. 259, 825–832 (2018). https://doi.org/10.1016/j.snb.2017.12.139

    Article  CAS  Google Scholar 

  12. B. Tandon, G.S. Shanker, A. Nag, Multifunctional Sn- and Fe-codoped In2O3 colloidal nanocrystals: plasmonics and magnetism. J. Phys. Chem. Lett. 5, 2306–2311 (2014). https://doi.org/10.1021/jz500949g

    Article  CAS  Google Scholar 

  13. G. Shen, B. Liang, X. Wang, P. Chen, C. Zhou, Indium oxide nanospirals made of kinked nanowires. ACS Nano 5, 2155–2161 (2011). https://doi.org/10.1021/nn103358y

    Article  CAS  Google Scholar 

  14. G. Shen, B. Liang, X. Wang, H. Huang, D. Chen, Z.L. Wang, Ultrathin In2O3 nanowires with diameters below 4 nm: synthesis, reversible wettability switching behavior, and transparent thin-film transistor applications. ACS Nano 5, 6148–6155 (2011). https://doi.org/10.1021/nn2014722

    Article  CAS  Google Scholar 

  15. H. Cao, X. Qiu, Y. Liang, Q. Zhu, M. Zhao, Room-temperature ultraviolet-emitting In2O3 nanowires. Appl. Phys. Lett. 83, 761–763 (2003). https://doi.org/10.1063/1.1596372

    Article  CAS  Google Scholar 

  16. C.-J. Chen, W.-L. Xu, M.-Y. Chern, Low-temperature epitaxial growth of vertical In2O3 nanowires on A-plane sapphire with hexagonal cross-section. Adv. Mater. 19, 3012–3015 (2007). https://doi.org/10.1002/adma.200602764

    Article  CAS  Google Scholar 

  17. K.R. Prasad, K. Koga, N. Miura, Electrochemical deposition of nanostructured indium oxide: high-performance electrode material for redox supercapacitors. Chem. Mater. 16, 1845–1847 (2004). https://doi.org/10.1021/cm0497576

    Article  CAS  Google Scholar 

  18. C. Chan, M. Lin, L. Chao, K. Lee, L. Tien, C. Ho, Optical characterization of structural quality in the formation of In2O3 thin-film nanostructures. J. Phys. Chem. C 120, 21983–21989 (2016). https://doi.org/10.1021/acs.jpcc.6b06452

    Article  CAS  Google Scholar 

  19. K. Robbie, M.J. Brett, Sculptured thin films and glancing angle deposition: growth mechanics and applications. J. Vac. Sci. Technol. 15, 1460–1465 (1997). https://doi.org/10.1116/1.580562

    Article  CAS  Google Scholar 

  20. R. Lahiri, A. Ghosh, B. Choudhuri, A. Mondal, Investigation on improved performance of erbium doped TiO2 nanowire based UV detector. Mater. Res. Bull. 103, 259–267 (2018). https://doi.org/10.1016/j.materresbull.2018.03.024

    Article  CAS  Google Scholar 

  21. T. Goswami, A. Mondal, P. Singh, B. Choudhuri, In2−XO3−Y 1D perpendicular nanostructure arrays as ultraviolet detector. Solid State Sci. 48, 56–60 (2015). https://doi.org/10.1016/j.solidstatesciences.2015.07.001

    Article  CAS  Google Scholar 

  22. Y. Keriti, A. Keffous, K. Dib, S. Djellab, M. Trari, Photoluminescence and photocatalytic properties of Er3+-doped In2O3 thin films prepared by sol–gel: application to Rhodamine B degradation under solar light. Res. Chem. Intermed. 44, 1537–1550 (2018). https://doi.org/10.1007/s11164-017-3183-1

    Article  CAS  Google Scholar 

  23. S.C.S. Lemos, F.C. Romeiro, L.F. de Paula, R.F. Gonçalves, A.P. de Moura, M.M. Ferrer, E. Longo, A.O.T. Patrocinio, R.C. Lima, Effect of Er3+ ions on the phase formation and properties of In2O3 nanostructures crystallized upon microwave heating. J. Solid State Chem. 249, 58–63 (2017). https://doi.org/10.1016/j.jssc.2017.02.011

    Article  CAS  Google Scholar 

  24. Q. Xiao, H. Zhu, D. Tu, E. Ma, X. Chen, Near-infrared-to-near-infrared downshifting and near-infrared-to-visible upconverting luminescence of Er3+-doped In2O3 nanocrystals. J. Phys. Chem. C 117, 10834–10841 (2013). https://doi.org/10.1021/jp4030552

    Article  CAS  Google Scholar 

  25. S. Kalusniak, L. Orphal, P. Schäfer, A.S. Kuznetsov, O. Benson, S. Sadofev, (In,Er)2O3 alloys and photoluminescence of Er3+ at indirect excitation via the crystalline host. Phys. Status Solidi B (2018). https://doi.org/10.1002/pssb.201800243

    Article  Google Scholar 

  26. H.K. Kim, C.C. Li, G. Nykolak, P.C. Becker, Photoluminescence and electrical properties of erbium-doped indium oxide films prepared by rf sputtering. J. Appl. Phys. 76, 8209–8211 (1994). https://doi.org/10.1063/1.357882

    Article  CAS  Google Scholar 

  27. L. Xu, B. Dong, Y. Wang, X. Bai, J. Chen, Q. Liu, H. Song, Porous In2O3:RE (RE = Gd, Tb, Dy, Ho, Er, Tm, Yb) nanotubes: electrospinning preparation and room gas-sensing properties. J. Phys. Chem. C 114, 9089–9095 (2010). https://doi.org/10.1021/jp101115v

    Article  CAS  Google Scholar 

  28. Z. Qin, Y. Liu, W. Chen, P. Ai, Y. Wu, S. Li, D. Yu, Highly sensitive alcohol sensor based on a single Er-doped In2O3 nanoribbon. Chem. Phys. Lett. 646, 12–17 (2016). https://doi.org/10.1016/j.cplett.2015.12.054

    Article  CAS  Google Scholar 

  29. A. Ghosh, A. Mondal, A. Das, S. Chattopadhyay, K.K. Chattopadhyay, Removal of oxygen related defects from chemically synthesized In2O3 thin film doped with Er by spin-on technique. J. Alloys Compd. 695, 1260–1265 (2017). https://doi.org/10.1016/j.jallcom.2016.10.254

    Article  CAS  Google Scholar 

  30. A. Ghosh, S.M.M.D. Dwivedi, S. Chakrabartty, M. Henini, A. Mondal, Detailed investigation of defect states in erbium doped In2O3 thin films. Mater. Res. Bull. 99, 211–218 (2018). https://doi.org/10.1016/j.materresbull.2017.11.020

    Article  CAS  Google Scholar 

  31. A. Ghosh, S.M.M. DharDwivedi, H. Ghadi, P. Chinnamuthu, S. Chakrabarti, A. Mondal, Boosted UV sensitivity of Er-doped In2O3 thin films using plasmonic Ag nanoparticle-based surface texturing. Plasmonics. 13, 1105–1113 (2018). https://doi.org/10.1007/s11468-017-0679-x

    Article  CAS  Google Scholar 

  32. C.M. Zhou, D. Gall, Development of two-level porosity during glancing angle deposition. J. Appl. Phys. 103, 014307 (2008). https://doi.org/10.1063/1.2828174

    Article  CAS  Google Scholar 

  33. D. Han, J. Yang, F. Gu, Z. Wang, Effects of rare earth element doping on the ethanol gas-sensing performance of three-dimensionally ordered macroporous In2O3. RSC Adv. 6, 45085–45092 (2016). https://doi.org/10.1039/C6RA06816B

    Article  CAS  Google Scholar 

  34. D.Y. Lee, J.-T. Kim, J. Park, Y.-H. Kim, I.-K. Lee, M. Lee, B. Kim, Effect of Er doping on optical band gap energy of TiO2 thin films prepared by spin coating. Curr. Appl. Phys. 13, 1301–1305 (2013). https://doi.org/10.1016/j.cap.2013.03.025

    Article  Google Scholar 

  35. E. Asikuzun, O. Ozturk, L. Arda, A.T. Tasci, F. Kartal, C. Terzioglu, High-quality c-axis oriented non-vacuum Er doped ZnO thin films. Ceram. Int. 42, 8085–8091 (2016). https://doi.org/10.1016/j.ceramint.2016.02.008

    Article  CAS  Google Scholar 

  36. T. Zhang, F. Gu, D. Han, Z. Wang, G. Guo, Synthesis, characterization and alcohol-sensing properties of rare earth doped In2O3 hollow spheres. Sens. Actuators B Chem. 177, 1180–1188 (2013). https://doi.org/10.1016/j.snb.2012.12.024

    Article  CAS  Google Scholar 

  37. X. Liu, Y. Wei, R. Wei, J. Yang, H. Guo, Elaboration, structure, and luminescence of Eu3+ doped BaLuF5-based transparent glass-ceramics. J. Am. Ceram. Soc. 96, 798–800 (2013). https://doi.org/10.1111/jace.12086

    Article  CAS  Google Scholar 

  38. T.G. Conti, A.J. Chiquito, R.O. Da Silva, E. Longo, E.R. Leite, Electrical properties of highly conducting SnO2: Sb nanocrystals synthesized using a nonaqueous sol–gel method. J. Am. Ceram. Soc. 93, 3862–3866 (2010). https://doi.org/10.1111/j.1551-2916.2010.03979.x

    Article  CAS  Google Scholar 

  39. Y.Y. Zhu, S. Chen, R. Xu, Z.B. Fang, J.F. Zhao, Y.L. Fan, X.J. Yang, Z.M. Jiang, Band offsets of Er2O3 films epitaxially grown on Si substrates. Appl. Phys. Lett. 88, 162909 (2006). https://doi.org/10.1063/1.2196476

    Article  CAS  Google Scholar 

  40. X. Dong, H. Yu, W. Li, Y. Pei, Y. Chen, First-principles study on band structures and electrical transports of doped-SnTe. J. Mater. 2, 158–164 (2016). https://doi.org/10.1016/j.jmat.2016.05.007

    Article  Google Scholar 

  41. S. Obregón, G. Colón, Erbium doped TiO2–Bi2WO6 heterostructure with improved photocatalytic activity under sun-like irradiation. Appl. Catal. B 140–141, 299–305 (2013). https://doi.org/10.1016/j.apcatb.2013.04.014

    Article  CAS  Google Scholar 

  42. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953). https://doi.org/10.1103/PhysRev.92.1324

    Article  CAS  Google Scholar 

  43. G.D. Cody, Urbach edge of crystalline and amorphous silicon: a personal review. J. Non. Cryst. Solids 141, 3–15 (1992). https://doi.org/10.1016/S0022-3093(05)80513-7

    Article  CAS  Google Scholar 

  44. M.V. Kurik, Urbach rule. Phys. Status Solidi 8, 9–45 (1971). https://doi.org/10.1002/pssa.2210080102

    Article  CAS  Google Scholar 

  45. S.M. Wasim, C. Rincón, G. Marín, P. Bocaranda, E. Hernández, I. Bonalde, E. Medina, Effect of structural disorder on the Urbach energy in Cu ternaries. Phys. Rev. B. 64, 195101 (2001). https://doi.org/10.1103/PhysRevB.64.195101

    Article  CAS  Google Scholar 

  46. Y. Pan, F. Inam, M. Zhang, D.A. Drabold, Atomistic origin of urbach tails in amorphous silicon. Phys. Rev. Lett. 100, 206403 (2008). https://doi.org/10.1103/PhysRevLett.100.206403

    Article  CAS  Google Scholar 

  47. B. Abay, H.S. Güder, H. Efeoglu, Y.K. Yogurtçu, Excitonic absorption and Urbach-Martienssen’s tails in Er-doped and undoped n-type InSe. J. Phys. D Appl. Phys. 32, 2942–2948 (1999). https://doi.org/10.1088/0022-3727/32/22/317

    Article  CAS  Google Scholar 

  48. K. Boubaker, A physical explanation to the controversial Urbach tailing universality. Eur. Phys. J. Plus. 126, 10 (2011). https://doi.org/10.1140/epjp/i2011-11010-4

    Article  Google Scholar 

  49. M.-M. Bagheri-Mohagheghi, M. Shokooh-Saremi, The effect of high acceptor dopant concentration of Zn2+ on electrical, optical and structural properties of the In2O3 transparent conducting thin films. Semicond. Sci. Technol. 18, 97–103 (2003). https://doi.org/10.1088/0268-1242/18/2/306

    Article  CAS  Google Scholar 

  50. D. Maestre, E. Hernández, A. Cremades, M. Amati, J. Piqueras, Synthesis and characterization of small dimensional structures of Er-doped SnO2 and erbium–tin–oxide. Cryst. Growth Des. 12, 2478–2484 (2012). https://doi.org/10.1021/cg300106k

    Article  CAS  Google Scholar 

  51. C.-X. Wang, G.-W. Yang, H.-W. Liu, Y.-H. Han, J.-F. Luo, C.-X. Gao, G.-T. Zou, Experimental analysis and theoretical model for anomalously high ideality factors in ZnO/diamond p–n junction diode. Appl. Phys. Lett. 84, 2427–2429 (2004). https://doi.org/10.1063/1.1689397

    Article  CAS  Google Scholar 

  52. A. Das, M. Palit, S. Paul, B.N. Chowdhury, H.S. Dutta, A. Karmakar, S. Chattopadhyay, Investigation of the electrical switching and rectification characteristics of a single standalone n-type ZnO-nanowire/p-Si junction diode. Appl. Phys. Lett. 105, 083106 (2014). https://doi.org/10.1063/1.4893944

    Article  CAS  Google Scholar 

  53. S. Mondal, A. Ghosh, M.R. Piton, J.P. Gomes, J.F. Felix, Y.G. Gobato, H.V.A. Galeti, B. Choudhuri, S.M.M. DharDwivedi, M. Henini, A. Mondal, Investigation of optical and electrical properties of erbium-doped TiO2 thin films for photodetector applications. J. Mater. Sci.: Mater. Electron. 29, 19588–19600 (2018). https://doi.org/10.1007/s10854-018-0090-1

    Article  CAS  Google Scholar 

  54. D. He, Y. Pan, H. Nan, S. Gu, Z. Yang, B. Wu, X. Luo, B. Xu, Y. Zhang, Y. Li, Z. Ni, B. Wang, J. Zhu, Y. Chai, Y. Shi, X. Wang, A van der Waals pn heterojunction with organic/inorganic semiconductors. Appl. Phys. Lett. 107, 183103 (2015). https://doi.org/10.1063/1.4935028

    Article  CAS  Google Scholar 

  55. J.-K. Kim, K. Cho, T.-Y. Kim, J. Pak, J. Jang, Y. Song, Y. Kim, B.Y. Choi, S. Chung, W.-K. Hong, T. Lee, Trap-mediated electronic transport properties of gate-tunable pentacene/MoS2 p–n heterojunction diodes. Sci. Rep. 6, 36775 (2016). https://doi.org/10.1038/srep36775

    Article  CAS  Google Scholar 

  56. A. Ghosh, P. Kannoje, A. Mondal, Ultraviolet detection by Cr doped In2O3 TF. IET Optoelectron. (2019). https://doi.org/10.1049/iet-opt.2018.5018

    Article  Google Scholar 

  57. J.P. Sullivan, R.T. Tung, M.R. Pinto, W.R. Graham, Electron transport of inhomogeneous Schottky barriers: a numerical study. J. Appl. Phys. 70, 7403–7424 (1991). https://doi.org/10.1063/1.349737

    Article  CAS  Google Scholar 

  58. D. Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, C. Zhou, Ultraviolet photodetection properties of indium oxide nanowires. Appl. Phys. A Mater. Sci. Process. 77, 163–166 (2003). https://doi.org/10.1007/s00339-003-2099-3

    Article  CAS  Google Scholar 

  59. H.S. Al-Salman, M.J. Abdullah, Fabrication and characterization of undoped and cobalt-doped ZnO based UV photodetector prepared by RF-sputtering. J. Mater. Sci. Technol. 29, 1139–1145 (2013). https://doi.org/10.1016/j.jmst.2013.10.007

    Article  CAS  Google Scholar 

  60. H. Ghadi, P. Murkute, A. Ghosh, S.M.M.D. Dwivedi, A. Mondal, S. Chakrabarti, Ultrasensitive zinc magnesium oxide nanorods based micro-sensor platform for UV detection and light trapping. Sens. Actuators A Phys. 278, 127–139 (2018). https://doi.org/10.1016/j.sna.2018.05.028

    Article  CAS  Google Scholar 

  61. J. Gan, X. Lu, T. Zhai, Y. Zhao, S. Xie, Y. Mao, Y. Zhang, Y. Yang, Y. Tong, Vertically aligned In2O3 nanorods on FTO substrates for photoelectrochemical applications. J. Mater. Chem. 21, 14685 (2011). https://doi.org/10.1039/c1jm11774b

    Article  CAS  Google Scholar 

  62. J.S. Jeong, J.Y. Lee, C.J. Lee, S.J. An, G.-C. Yi, Synthesis and characterization of high-quality In2O3 nanobelts via catalyst-free growth using a simple physical vapor deposition at low temperature. Chem. Phys. Lett. 384, 246–250 (2004). https://doi.org/10.1016/j.cplett.2003.12.027

    Article  CAS  Google Scholar 

  63. S. Dhar, P. Chakraborty, T. Majumder, S.P. Mondal, Acid-treated PEDOT:PSS polymer and TiO2 nanorod Schottky junction ultraviolet photodetectors with ultrahigh external quantum efficiency, detectivity, and responsivity. ACS Appl. Mater. Interfaces. 10, 41618–41626 (2018). https://doi.org/10.1021/acsami.8b12643

    Article  CAS  Google Scholar 

  64. G. Rawat, D. Somvanshi, H. Kumar, Y. Kumar, C. Kumar, S. Jit, Ultraviolet detection properties of p-Si/n-TiO2 heterojunction photodiodes grown by electron-beam evaporation and sol–gel methods: a comparative study. IEEE Trans. Nanotechnol. 15, 193–200 (2016). https://doi.org/10.1109/TNANO.2015.2512565

    Article  CAS  Google Scholar 

  65. W. Lee, M. Hon, An ultraviolet photo-detector based on TiO2/water solid–liquid heterojunction. Appl. Phys. Lett. 99, 251102 (2011). https://doi.org/10.1063/1.3671076

    Article  CAS  Google Scholar 

  66. M. Zhang, D. Zhang, F. Jing, G. Liu, K. Lv, J. Zhou, S. Ruan, Fast decay time and low dark current mechanism in TiO2 ultraviolet detector. IEEE Photon. Technol. Lett. 27, 54–57 (2015). https://doi.org/10.1109/LPT.2014.2360581

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge COE, NIT Durgapur for preliminary FEGSEM facility, SAIF, IIT Bombay for providing the high-resolution FEGSEM facility. The authors would also like to acknowledge the SAIF, NEHU for TEM analysis of the samples. Also, the authors acknowledge IITBNF, IIT Bombay for providing UV–VIS absorption measurement facility, DST SERB (EMR/2016/005521, for providing e-beam cum GLAD machine), NIT Durgapur, CSIR (03(1355)/16/EMR-II) and Govt. of India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniruddha Mondal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A., Murkute, P., Lahiri, R. et al. GLAD synthesised erbium doped In2O3 nano-columns for UV detection. J Mater Sci: Mater Electron 30, 12739–12752 (2019). https://doi.org/10.1007/s10854-019-01638-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01638-w

Navigation