Skip to main content
Log in

Enhanced photoelectrochemical and sensing performance of TiO2/NiOOH/Ag to glucose

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Diabetes is mainly caused by abnormal increase of blood glucose level, the corresponding glucose sensor can be used to monitor the concentration of glucose. TiO2/NiOOH composite sensor was prepared by a facile method of electrodeposition of NiOOH on TiO2 nanotube arrays (TNT), and triangle Ag sheets modified by photodeposition. The structures and photoelectric properties were characterized by electrochemical workstation. It was found that NiOOH could effectively improve the photoelectrochemical properties of TNT. When Ag was further photodeposited on TNT/NiOOH, the photocurrent density improved at 0.21 mA/cm2. The enhanced photoelectrochemical properties can be attributed to the extended visible light absorption and effective separation of photo-generated carriers by the synergistic effect of Ag and NiOOH. The modified TNT/NiOOH exhibited much stronger photoelectrochemical reduction property toward glucose in comparison to pure TNT. The sensitivity of TNT/NiOOH/Ag to glucose can reach 2490 μA·cm−2·mM−1 and its detection limit low to 0.44 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article [and its supplementary information files].

References

  1. Y. Yang, L. Kiyoung, K. Yuya, S. Patrik, Nb doped TiO2 nanotubes for enhanced photoelectrochemical water-splitting. Nanoscale 3, 3094–3096 (2011)

    Google Scholar 

  2. H. Zhu, R. Ding, J.Z. XinleDou, H. Luo, L. Duan, Y. Zhang, Yu. Lianqing, Metal mesh and narrow band gap Mn0.5Cd0.5S photocatalyst cooperation for efficient hydrogen production. Materials 15, 5861 (2022)

    ADS  Google Scholar 

  3. J.E. Bo Liu, E.S.A. Boercker, Oriented single crystalline titanium dioxide nanowires. Nanotechnology 19, 7 (2008)

    Google Scholar 

  4. G. Zhang, Y. Zhang, S. Chen, H. Chen, Le. Liu, W. Ding, J. Wang, A. Zhang, S. Pang, X. Guo, Yu. Lianqing, T. Jiu, Improved interfacial property by small molecule ethanediamine for high performance inverted planar perovskite solar cells. J. Energy Chem. 54, 467–474 (2021)

    Google Scholar 

  5. C. Wang, X. Zhang, Y. Zhang, Y. Jia, Hydrothermal growth of layered titanate nanosheet arrays on titanium foil and their topotactic transformation to heterostructured TiO2 photocatalysts. J. Phys. Chem. C 115, 22276–22285 (2011)

    Google Scholar 

  6. B. Liu, E.S. Aydil, Growth of oriented single-crystalline rutile tio2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 2, 1313985–1313990 (2009)

    Google Scholar 

  7. Yu. Lianqing, Y. Wang, J. Wang, X. Zhao, W. Xing, L.A. Rodrigues, D. Amaranatha Reddy, Y.P. Zhang, H.H. Zhu, CuPc nanowires PVD preparation and its extra high gas sensitivity to chlorine. Sens. Actuators A Phys. 334, 113362 (2022)

    Google Scholar 

  8. Wu. Jinming, T. Zhang, Y. Zeng, S. Hayakawa, K. Tsuru, A. Osaka, Large-scale preparation of ordered titania nanorods with enhanced photocatalytic activity. Langmuir 21, 6995–7002 (2005)

    Google Scholar 

  9. H. Luo, Yu. Lianqing, K. Xue, H. Zhu, Y. Zhang, Ultrathin ZIS nanosheets encapsulated in metal-organic-framework-derived CNCo-Fe3O4 as efficient functional photocatalyst for hydrogen evolution. J. Mater. Chem. A 10, 22453–22467 (2022)

    Google Scholar 

  10. Q. Cai, L. Yang, Yu. Yan, Investigations on the self-organized growth of TiO2 nanotube arrays by anodic oxidization. Thin Solid Films 515, 1802–1806 (2006)

    ADS  Google Scholar 

  11. J. Wang, H. Zhu, S. Tang, M. Li, Y. Zhang, W. Xing, Q. Xue, Yu. Lianqing, Sandwich structure MoO2/MoS2/TiO2 photocatalyst for superb hydrogen evolution. J. Alloy. Compd. 842, 155869 (2020)

    Google Scholar 

  12. K. Shankar, K. Mor Gopal, H.E. Prakasam et al., Highly-ordered TiO2 nanotube arrays up to 220 μm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18, 701–707 (2007)

    Google Scholar 

  13. Q. Yang, H. Zhu, X. Ji, Y. Zhang, Yu. Lianqing, Nanoarchitectonics of core-shelled hollow CuPc/Zn0.5Cd0.5S photocatalyst for stable hydrogen evolution under visible-light irradiation. J. Alloys Compd. 926, 166890 (2022)

    Google Scholar 

  14. Q. Cai, M. Paulose, O.K. Varghese, C.A. Grimes, The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J. Mater. Res. 20, 230–236 (2005)

    ADS  Google Scholar 

  15. M.M. Jan, T. Hiroaki, S. Patrik, High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew. Chem.-Int. Ed. 44, 2100–2102 (2005)

    Google Scholar 

  16. Y. Zhang, J. He, Q. Yang, H. Zhu, Q. Wang, Q. Xue, Yu. Lianqing, Solution quenched in-situ growth of hierarchical flower-like NiFe2O4/Fe2O3 heterojunction for wide-range light absorption. J. Power Sources 440, 227120 (2019)

    Google Scholar 

  17. Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, T. Majima, Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. J. Am. Chem. Soc. 136, 458–465 (2014)

    Google Scholar 

  18. X. Zhou, B. Jin, L. Li, F. Peng, H. Wang, Yu. Hao, Y. Fang, A carbon nitride/TiO2 nanotube array heterojunction visible-light photocatalyst: synthesis, characterization, and photoelectrochemical properties. J. Mater. Chem. 22, 17900–17905 (2012)

    Google Scholar 

  19. Yu. Lianqing, Y. Zhang, J. He, H. Zhu, X. Zhou, M. Li, Q. Yang, Xu. Fei, Enhanced photoelectrochemical properties of α-Fe2O3 nanoarrays for water splitting. J. Alloy. Compd. 753, 601–606 (2018)

    Google Scholar 

  20. Z. Qin, Xu. Wei, S. Chen, J. Chen, J. Qiu, C. Li, Electrochemical immunoassay for the carcinoembryonic antigen based on the use of a glassy carbon electrode modified with an octahedral Cu2O-gold nanocomposite and staphylococcal protein for signal amplification. Microchim. Acta 185, 8 (2018)

    Google Scholar 

  21. Y. Zhu, Y. Liu, Xu. Yitong et al., Three-dimensional TiO2@Cu2O@Nickel foam electrodes: design, characterization, and validation of O2-independent photocathodicenzymatic bioanalysis. ACS Appl. Mater. Interfaces. 11, 25702–25707 (2019)

    Google Scholar 

  22. M. Li, H. Wang, X. Wang et al., Ti3C2/Cu2O heterostructure based signal-of photoelectrochemical sensor for high sensitivity detection of glucose. Biosens. Bioelectron. 142, 111535 (2019)

    Google Scholar 

  23. Bo. Chai, T. Peng, J. Mao, K. Li, L. Zan, Graphitic carbon nitride (g-C3N4)-Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation. Phys. Chem. Chem. Phys. 14, 16745–16752 (2012)

    Google Scholar 

  24. S. Obregón, G. Colón, Improved H2 production of Pt-TiO2/g-C3N4-MnOx, composites by an efficient handling of photogenerated charge pairs. Appl. Catal. B 144, 775–782 (2014)

    Google Scholar 

  25. R. Nasuha, C. Mayorga-Martinez Carmen, Z. Sofer et al., 1T-Phase transition metal dichalcogenides (MoS2, MoSe2, WS2, and WSe2) with fast heterogeneous electron transfer: application on second-generation enzyme-based biosensor. ACS Appl. Mater. Interfaces 9, 40697–40706 (2017)

    Google Scholar 

  26. Y. Wang, L. Bai, Y. Wang, D. Qin, D. Shan, Lu. Xiaoquan, Ternary nanocomposites of Au/CuS/TiO2 for an ultrasensitive photoelectrochemical non-enzymatic glucose sensor. Analyst 143, 1699–1704 (2018)

    ADS  Google Scholar 

  27. Y. Wang, S. Ge, Lina Zhang et al., Visible photoelectrochemical sensing platform by in 40 situ generated CdS quantum dots decorated branched-TiO2 nanorods equiooed with Prussian blue electrochromic display. Biosens. Bioelectron. 89, 859–865 (2017)

    Google Scholar 

  28. D. Fan, X. Ren, H. Wang et al., Ultrasensitive sandwich-type photoelectrochemical immunisener based on CdSe sensitized La-TiO2 matrix and signal amplification of polystyrene@Ab2 composites. Biosens. Bioelectron. 87, 593–599 (2017)

    Google Scholar 

  29. Yu. Lianqing, Y. Zhang, Q. Zhi, F.S. Qingqing Wang, A.D.T. Gittleson, Enhanced photoelectrochemical and sensing performance of novel TiO2 arrays to H2O2 detection. Sens. Actuator B Chem. 211, 111–115 (2015)

    Google Scholar 

  30. Y. Ling, Research progress of electrochemical enzyme-free glucose sensor. Light Ind. Sci. Technol. 35, 26–28 (2019)

    Google Scholar 

  31. Z. Xiao, Research progress of enzyme-free glucose sensor technology. Electron. Technol. Softw. Eng. 24, 53–54 (2018)

    Google Scholar 

  32. Z. Zhuang, D. Xiao, Yi. Li, Research progress of enzyme-free glucose electrochemical sensors. Chem. Res. Appl. 21, 1486–1493 (2009)

    Google Scholar 

  33. P. Sejin, C.T. Dong, K.H. Chan, Nonenzymatic glucose getection using mesoporous platinum. Anal. Chem. 75, 3046–3049 (2003)

    Google Scholar 

  34. K.P. Musselman, A. Marin, A. Wisnet, C. Scheu, J.L. MacManus-Driscoll, L. Schmidt-Mende, A novel buffering technique for aqueous processing of zinc oxide nanostructures and interfaces, and corresponding improvement of electrodeposited ZnO-Cu2O photovoltaics. Adv. Funct. Mater. 21, 573–582 (2011)

    Google Scholar 

  35. Yu. Yang, Y. Zhang, Z. Fang, L. Zhang, Z. Zheng, Z. Wang, W. Feng, S. Weng, S. Zhang, P. Liu, Simultaneous realization of enhanced photoactivity and promoted photostability by multilayered MoS2 coating on CdS nanowire structure via compact coating methodology. ACS Appl. Mater. Interfaces. 9, 6950–6958 (2017)

    Google Scholar 

  36. Y. Chen, L. Wang, W. Wang, M. Cao, Enhanced photoelectrochemical properties of ZnO/ZnSe/CdSe/Cu2-xSe core-shell nanowire arrays fabricated by ion-replacement method. Appl. Catal. B-Environ. 209, 110–117 (2017)

    Google Scholar 

  37. J. Zhang, Y. Zhang, Yu. Lianqing, X. Zhang, W. Wang, Preparation of Ag-modified nano-titanium and their photocatalytic activity. Rare Met. 30, 267 (2011)

    Google Scholar 

  38. Yu. Lianqing, M. Li, C. Huang, Y. Zhang, J. He, X. Zhou, H. Zhu, Photoelectrochemical properties of N doped black TiO2 nanotube arrays. Mater. Lett. 216, 239–242 (2018)

    Google Scholar 

  39. Wu. Lin, S. Cao, D. Yi, Chin. J. Rare Metals 29, 34 (2005)

    Google Scholar 

  40. F. Fatwa, Abdi, Abdelkrim Chemseddine, Sean P Berglund, Roel van de Krol, Assessing the Suitability of Iron Tungstate (Fe2WO6) as a Photoelectrode Material for Water Oxidation. J. Phys. Chem. C 121, 153–160 (2017)

    Google Scholar 

  41. J. Wang, H. Zhu, S. Tang, M. Li, Y. Zhang, W. Xing, Yu. Lianqing, Sandwich structure MoO2/MoS2/TiO2 photocatalyst for superb hydrogen evolution. J. Alloy. Compd. 842, 155869 (2020)

    Google Scholar 

  42. L. Duan, H. Zhu, M. Li, X. Zhao, Y. Wang, Y. Zhang, Yu. Lianqing, Atom substitution method to construct full-solar-spectrum absorption MoSeS/TiO2 nanotube arrays for highly efficient hydrogen evolution. J. Alloy. Compd. 889, 7 (2021)

    Google Scholar 

  43. W. Fang, Y. Lin, R. Xv, Fu. Li, Boosting photoelectrochemical performance of BiVO4 photoanode by synergistic effect of WO3/BiVO4 heterojunction construction and NiOOH water oxidation modification. ACS Appl. Energy Mater. 1(5), 11402–11412 (2022)

    Google Scholar 

  44. L. Duan, H. Zhu, J. He, Q. Yang, X. Zhao, Y. Zhang, Yu. Lianqing, Oriented titania nanotube biphase junction arrays on water splitting. Mater. Sci. Semicond. Process. 126, 105667 (2021)

    Google Scholar 

  45. Q. Yang, Yu. Lianqing, X. Zhao, Y. Wang, H. Zhu, Y. Zhang, Highly stable gamma-NiOOH/ZnCdS photocatalyst for efficient hydrogen evolution. Int. J. Hydrogen Energy 47, 27516–27526 (2022)

    Google Scholar 

Download references

Acknowledgements

The financial support for this study by the Natural Science Foundation of Shandong Province (ZR2020ME010), Technology Project of Qingdao (22-3-7-cspz-9-nsh) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianqing Yu.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or fnancial relationships that could be construed as a potential confict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 196 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Ji, X., Zhao, X. et al. Enhanced photoelectrochemical and sensing performance of TiO2/NiOOH/Ag to glucose. Appl. Phys. A 129, 92 (2023). https://doi.org/10.1007/s00339-022-06363-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06363-6

Keywords

Navigation