Skip to main content
Log in

Investigation of optical and electrical properties of erbium-doped TiO2 thin films for photodetector applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We have investigated the electrical and optical properties of erbium (Er3+) doped TiO2 thin films (Er:TiO2 TFs) grown by sol–gel technique on glass and silicon substrates. The samples were characterized by field emission gun–scanning electron microscopes (FEG–SEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), X-ray diffraction (XRD), photoluminescence (PL) and current–voltage measurement techniques. FEG–SEM and AFM images showed the morphological change in the structure of Er:TiO2 TFs and EDX analysis confirmed the Er3+ doped into TiO2 lattice. Broad PL emissions in visible and infrared regions were observed in undoped TiO2 samples and associated to different mechanisms due to the anatase and rutile phases. PL spectra revealed sharp peaks at 525 nm, 565 nm, 667 nm and 1.54 µm which are related to Er3+ emissions in Er:TiO2 samples. The undoped TiO2 and Er:TiO2 TFs based UV-photodetectors were fabricated, and various device parameters were investigated. The doped devices exhibit high photoresponse upon illuminating 350 nm UV light at 2 V bias with faster response time compared to undoped device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C 1, 1–21 (2000). https://doi.org/10.1016/S1389-5567(00)00002-2

    Article  CAS  Google Scholar 

  2. X. Chen, S.S. Mao, J. Chem. Rev. 107(7), 2891–2959 (2007). https://doi.org/10.1021/cr0500535

    Article  CAS  Google Scholar 

  3. A.-W. Xu, Y. Gao, H.-Q. Liu, J. Catal. 207, 151–157 (2002). https://doi.org/10.1006/jcat.2002.3539

    Article  CAS  Google Scholar 

  4. M. Ferroni, V. Guidi, G. Martinelli, G. Faglia, P. Nelli, G. Sberveglieri, Nanostruct. Mater. 7(7), 709–718 (1996). https://doi.org/10.1016/S0965-9773(96)00050-5

    Article  CAS  Google Scholar 

  5. N. Savage, B. Chwieroth, A. Ginwalla, B.R. Patton, S.A. Akbar, P.K. Dutta, Sens. Actuators B 79, 17–27 (2001). https://doi.org/10.1016/S0925-4005(01)00843-7

    Article  CAS  Google Scholar 

  6. T. Xie, A. Rani, B. Wen, A. Castillo, B. Thomson, R. Debnath, T.E. Murphy, R.D. Gomez, A. Motayed, Thin Solid Films 620, 76–81 (2016). https://doi.org/10.1016/j.tsf.2016.07.075

    Article  CAS  Google Scholar 

  7. M. Selman, Z. Hassan, Sens. Actuators A 221, 15–21 (2015). https://doi.org/10.1016/j.sna.2014.10.041

    Article  CAS  Google Scholar 

  8. F. Li, Y. Gu, Mater. Sci. Semicond. Process. 15, 11–14 (2012). https://doi.org/10.1016/j.mssp.2011.04.008

    Article  CAS  Google Scholar 

  9. Y.Y. Hui, P.H. Shih, K.J. Sun, C.F. Lin, Thin Solid Films 515, 6754–6757 (2007). https://doi.org/10.1016/j.tsf.2007.02.013

    Article  CAS  Google Scholar 

  10. D.S. Lee, A.J. Steckl, Appl. Phys. Lett. 80, 1888–1890 (2002). https://doi.org/10.1063/1.1461884

    Article  CAS  Google Scholar 

  11. L. Yang, T. Carmon, B. Min, S.M. Spillane, K.J. Vahala, Appl. Phys. Lett. 86, 091114 (2005). https://doi.org/10.1063/1.1873043

    Article  CAS  Google Scholar 

  12. S.G. Krishnan, P.S. Archana, B. Vidyadharan, I.I. Misnon, B.L. Vijayan, V.M. Nair, A. Gupta, R. Jose, J. Alloys Compd. 684, 328–334 (2016). https://doi.org/10.1016/j.jallcom.2016.05.183

    Article  CAS  Google Scholar 

  13. A. Ganguly, A. Mondal, B. Choudhuri, T. Goswami, K.K. Chattopadhyay, J. Adv. Sci. Eng. Med. 6, 797–801 (2014). https://doi.org/10.1166/asem.2014.1566

    Article  CAS  Google Scholar 

  14. H. Ishiguro, R. Nakano, Y. Yao, J. Kajioka, A. Fujishima, K. Sunada, M. Minoshima, K. Hashimoto, Y. Kubota, J. Photochem. Photobiol. Sci. 10, 1825–1829 (2011). https://doi.org/10.1039/c1pp05192j

    Article  CAS  Google Scholar 

  15. J. Reszczyn´ska, T. Grzyb, J.W. Sobczak, W. Lisowski, M. Gazda, B. Ohtani, A. Zaleska, Appl. Surf. Sci. 307, 333–345 (2014). https://doi.org/10.1016/j.apsusc.2014.03.199

    Article  CAS  Google Scholar 

  16. T.K. Srinivasan, B.S. Panigrahi, N. Suriyamurthy, P.K. Parida, B. Venkatraman, J. Rare Earths 33(1), 20 (2015). https://doi.org/10.1016/S1002-0721(14)60377-X

    Article  CAS  Google Scholar 

  17. G. Xing, Z. Zhang. S. Qi, G. Zhou, K. Zhang, Z. Cui, Y. Feng, Z. Shan, S. Meng, Opt. Mater. 75, 102–108 (2018). https://doi.org/10.1016/j.optmat.2017.10.006

    Article  CAS  Google Scholar 

  18. S. Kumoro, T. Katsumata, H. Kokai, T.M.X. Zhao, Appl. Phys. Lett. 81(25), 4733–4735 (2002). https://doi.org/10.1063/1.1530733

    Article  CAS  Google Scholar 

  19. L. Skowronski, R. Szczesny, K. Zdunek, Thin Solid Films 632, 112–118 (2017). https://doi.org/10.1016/j.tsf.2017.04.041

    Article  CAS  Google Scholar 

  20. S. Wang, G. Xia, H. He, K. Yi, J. Shao, Z. Fan, J. Alloys Compd. 431, 287–291 (2007). https://doi.org/10.1016/j.jallcom.2006.05.091

    Article  CAS  Google Scholar 

  21. M. Ueda, Y. Uchibayashi, S. Otsuka-Yao-Matsuo, T. Okura, J. Alloys Compd. 459, 369–376 (2008). https://doi.org/10.1016/j.jallcom.2007.04.266

    Article  CAS  Google Scholar 

  22. D.S. Gospodinova, L.P.H. Jeurgens, U. Welzel, L. Bauermann, R.C. Hoffmann, J. Bill, Thin Solid Films 520, 5928–5935 (2012). https://doi.org/10.1016/j.tsf.2012.03.047

    Article  CAS  Google Scholar 

  23. H.-Y. Liu, W.-H. Lin, W.-C. Sun, S.-Y. Wei, S.-M. Wu, Mater. Sci. Semicond. Process. 57, 90–94 (2017). https://doi.org/10.1016/j.mssp.2016.10.005

    Article  CAS  Google Scholar 

  24. T. Watanabe, S. Fukayama, M. Miyauchi, A. Fujishima, K. Hashimoto, J. Sol-Gel Sci. Technol. 19, 71–76 (2000). https://doi.org/10.1023/A:1008762121743

    Article  CAS  Google Scholar 

  25. J. Xing, H. Wei, E.-J. Guo, F. Yang, J. Phys. D 44, 375104 (2011). https://doi.org/10.1088/0022-3727/44/37/375104

    Article  CAS  Google Scholar 

  26. K. Lv, M. Zhang, C. Liu, G. Liu, H. Li, S. Wen, Y. Chen, S. Ruan, J. Alloys Compd. 580, 614–617 (2013). https://doi.org/10.1016/j.jallcom.2013.07.161

    Article  CAS  Google Scholar 

  27. D.B. Patel, K.R. Chauhan, S.-H. Park, J. Kim, Mater. Sci. Semicond. Process. 64, 137–142 (2017). https://doi.org/10.1016/j.mssp.2017.03.024

    Article  CAS  Google Scholar 

  28. W.F. Xiang, P.R. Yang, A.J. Wang, K. Zhao, H. Ni, S.X. Zhong, Thin Solid Films 520, 7144–7146 (2012). https://doi.org/10.1016/j.tsf.2012.07.110

    Article  CAS  Google Scholar 

  29. M. Zhang, D. Li, J. Zhou, W. Chen, S. Ruan, J. Alloys Compd. 618, 233–235 (2015). https://doi.org/10.1016/j.jallcom.2014.07.040

    Article  CAS  Google Scholar 

  30. L. Miao, X. Xiao, F. Ran, S. Tanemura, G. Xu, Jpn. J. Appl. Phys. 50, 061101 (2011). https://doi.org/10.1143/JJAP.50.061101

    Article  CAS  Google Scholar 

  31. A. Ghosh, A. Mondal, A. Das, S. Chattopadhyay, K.K. Chattopadhyay, J. Alloys Compd. 695, 1260–1265 (2017). https://doi.org/10.1016/j.jallcom.2016.10.254

    Article  CAS  Google Scholar 

  32. R. Lahiri, A. Ghosh, S.M.M. Dhar Dwivedi, S. Chakrabartty, P. Chinnamuthu, A. Mondal, Appl. Phys. A 123, 573 (2017). https://doi.org/10.1007/s00339-017-1180-2

    Article  CAS  Google Scholar 

  33. D.Y. Lee, J.-T. Kim, J.-H. Park, Y.-H. Kim, I.-K. Lee, M.-H. Lee, B.-Y. Kim, Curr. Appl. Phys. 13, 1301–1305 (2013). https://doi.org/10.1016/j.cap.2013.03.025

    Article  Google Scholar 

  34. D.K. Pallotti, L. Passoni, P. Maddalena, F. Di Fonzo, S. Lettieri, J. Phys. Chem. C 121, 9011–9021 (2017). https://doi.org/10.1021/acs.jpcc.7b00321

    Article  CAS  Google Scholar 

  35. H. Tang, K. Prasad, R. Sanjinès, P.E. Schmid, F. Lévy, J. Appl. Phys. 75(4), 2042–2047 (1994). https://doi.org/10.1063/1.356306

    Article  CAS  Google Scholar 

  36. W. Luo, C. Fu, R. Li, Y. Liu, H. Zhu, X. Chen, Small 7(21), 3046–3056 (2011). https://doi.org/10.1002/smll.201100838

    Article  CAS  Google Scholar 

  37. Y. Yang, C. Wang, L. Xiang, X. Ma, D. Yang, AIP Adv. 4, 047109 (2014). https://doi.org/10.1063/1.4871188

    Article  CAS  Google Scholar 

  38. G.C. Vásquez, M.A. P-Herrero, D. Maestre, A. Gianoncelli, J. R-Castellanos, A. Cremades, J. G-Calbet, J. Piqueras, J. Phys. Chem. C 119(21), 11965–11974 (2015). https://doi.org/10.1021/acs.jpcc.5b01736

    Article  CAS  Google Scholar 

  39. S.R. Johannsen, S. Roesgaard, B. Julsgaard, R.A.S. Ferreira, J. Chevallier, P. Balling, S.K. Ram, A.N. Larsen, Opt. Mater. Express 6(5), 1664–1678 (2016). https://doi.org/10.1364/OME.6.001664

    Article  CAS  Google Scholar 

  40. M. Jiang, C. Zhu, J. Zhou, J. Chen, Y. Gao, X. Ma, D. Yang, J. Appl. Phys. 120, 163104 (2016). https://doi.org/10.1063/1.4966224

    Article  CAS  Google Scholar 

  41. A. Mondal, A. Ganguly, A. Das, B. Choudhuri, R.K. Yadav, Plasmonic 10(3), 667–673 (2015). https://doi.org/10.1007/s11468-014-9852-7

    Article  CAS  Google Scholar 

  42. P.B. Pillai, A.N. Corpus Mendoza, M.M. De Souza, G. Bree, D. Jeng, J. Renew. Sustain. Energy 6, 013142 (2014). https://doi.org/10.1063/1.4866260

    Article  CAS  Google Scholar 

  43. N. Szydlo, R. Poirier, J. Appl. Phys. 51, 3310 (1980). https://doi.org/10.1063/1.328037

    Article  CAS  Google Scholar 

  44. J.G. Mavroides, D.I. Tchernev, J.A. Kafalas, D.F. Kolesar, Mater. Res. Bull. 10, 1023–1030 (1975). https://doi.org/10.1016/0025-5408(75)90210-X

    Article  CAS  Google Scholar 

  45. T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Appl. Phys. Lett. 81(3), 454–456 (2002). https://doi.org/10.1063/1.1493647

    Article  CAS  Google Scholar 

  46. S.N. Das, K.-J. Moon, J.P. Kar, J.-H. Choi, J. Xiong, T. Lee, J.-M. Myoung, Appl. Phys. Lett. 97, 022103-1–022103-3 (2010). https://doi.org/10.1063/1.3464287

    Article  CAS  Google Scholar 

  47. P. Chinnamuthu, J.C. Dhar, A. Mondal, A. Bhattacharyya, N.K. Singh, J. Phys. D 45, 135102 (2012). https://doi.org/10.1088/0022-3727/45/13/135102

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would gratefully acknowledge SAIF IIT Bombay, India, for providing FEG-SEM and EDX facilities, IIC Roorkee, India for providing AFM facility and Department of Physics, N.I.T. Durgapur, CSIR (03(1355)/16/EMR-II), Government of India for financial support. The Brazilian authors acknowledge the financial support from the Brazilian agencies: Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP 2016/10668-7), FAPDF, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniruddha Mondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, S., Ghosh, A., Piton, M.R. et al. Investigation of optical and electrical properties of erbium-doped TiO2 thin films for photodetector applications. J Mater Sci: Mater Electron 29, 19588–19600 (2018). https://doi.org/10.1007/s10854-018-0090-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0090-1

Navigation