Skip to main content
Log in

Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The microscopic mechanisms of femtosecond laser ablation of an Al target are investigated in large-scale massively parallel atomistic simulations performed with a computational model combining classical molecular dynamics technique with a continuum description of the laser excitation and subsequent relaxation of conduction band electrons. The relatively large lateral size of the computational systems used in the simulations enables a detailed analysis of the evolution of multiple voids generated in a sub-surface region of the irradiated target in the spallation regime, when the material ejection is driven by the relaxation of laser-induced stresses. The nucleation, growth, and coalescence of voids take place within a broad (\(\sim \)100 nm) region of the target, leading to the formation of a transient foamy structure of interconnected liquid regions and eventual separation (or spallation) of a thin liquid layer from the bulk of the target. The thickness of the spalled layer is decreasing from the maximum of \(\sim \)50 nm while the temperature and ejection velocity are increasing with increasing fluence. At a fluence of \(\sim \)2.5 times the spallation threshold, the top part of the target reaches the conditions for an explosive decomposition into vapor and small clusters/droplets, marking the transition to the phase explosion regime of laser ablation. This transition is signified by a change in the composition of the ablation plume from large liquid droplets to a mixture of vapor-phase atoms and clusters/droplets of different sizes. The clusters of different sizes are spatially segregated in the expanding ablation plume, where small/medium size clusters present in the middle of the plume are followed by slower (velocities of less than 3 km/s) large droplets consisting of more than 10,000 atoms. The similarity of some of the characteristics of laser ablation of Al targets (e.g., evolution of voids in the spallation regime and cluster size distributions in the phase explosion regime) to the ones observed in earlier simulations performed for different target materials points to the common mechanical and thermodynamic origins of the underlying processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. The use of term “lattice temperature” in this paper does not imply the preservation of the crystalline order in the system but merely follow the terminology established in the literature presenting TTM calculations, when the term lattice temperature is commonly used to refer to the temperature of the ionic subsystem that can be brought out of equilibrium with the conduction-band electrons by short pulse laser irradiation. At high laser fluences the melting process may take place before the complete electron-phonon equilibration.

References

  1. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109 (1996)

    Article  ADS  Google Scholar 

  2. S.-S. Wellershoff, J. Hohlfeld, J. Güdde, E. Matthias, Appl. Phys. A 69, S99 (1999)

    ADS  Google Scholar 

  3. R.L. Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, Appl. Phys. Lett. 80, 3886 (2002)

    Article  ADS  Google Scholar 

  4. A.Y. Vorobyev, C. Guo, Appl. Phys. A 86, 321 (2007)

    Article  ADS  Google Scholar 

  5. Q.-Z. Zhao, S. Malzer, L.-J. Wang, Opt. Express 15, 15741 (2007)

    Article  ADS  Google Scholar 

  6. Y. Dai, M. He, H. Bian, B. Lu, X. Yan, G. Ma, Appl. Phys. A 106, 567 (2012)

    Article  ADS  Google Scholar 

  7. S. Barcikowski, A. Hahn, A.V. Kabashin, B.N. Chichkov, Appl. Phys. A 87, 47 (2007)

    Article  ADS  Google Scholar 

  8. J. Perriere, C. Boulmer-Leborgne, R. Benzerga, S. Tricot, J. Phys. D: Appl. Phys. 40, 7069 (2007)

    Google Scholar 

  9. N. Haustrup, G.M. O’Connor, Appl. Phys. Lett. 101, 263107 (2012)

    Article  ADS  Google Scholar 

  10. A. Miotello, N. Patel, Appl. Surf. Sci. 278, 19 (2013)

    Article  ADS  Google Scholar 

  11. P.L. Silvestrelli, A. Alavi, M. Parrinello, D. Frenkel, Phys. Rev. Lett. 77, 3149 (1996)

    Article  ADS  Google Scholar 

  12. V. Recoules, J. Clérouin, G. Zérah, P.M. Anglade, S. Mazevet, Phys. Rev. Lett. 96, 055503 (2006)

    Article  ADS  Google Scholar 

  13. Z. Lin, L.V. Zhigilei, V. Celli, Phys. Rev. B 77, 075133 (2008)

    Article  ADS  Google Scholar 

  14. H.O. Jeschke, M.S. Diakhate, M.E. Garcia, Appl. Phys. A 96, 33 (2009)

    Article  ADS  Google Scholar 

  15. Z. Lin, R.E. Allen, J. Phys.: Condens. Matter 21, 485503 (2009)

    Google Scholar 

  16. C.F. Richardson, P. Clancy, Mol. Sim. 7, 335 (1991)

    Article  Google Scholar 

  17. X. Wang, X. Xu, J. Heat Transfer 124, 265 (2002)

    Article  Google Scholar 

  18. D.S. Ivanov, L.V. Zhigilei, Phys. Rev. B 68, 064114 (2003)

    Article  ADS  Google Scholar 

  19. D.S. Ivanov, L.V. Zhigilei, Phys. Rev. Lett. 91, 105701 (2003)

    Article  ADS  Google Scholar 

  20. Z. Lin, L.V. Zhigilei, Phys. Rev. B 73, 184113 (2006)

    Article  ADS  Google Scholar 

  21. L.V. Zhigilei, Z. Lin, D.S. Ivanov, J. Phys. Chem. C 113, 11892 (2009)

    Article  Google Scholar 

  22. Z. Lin, E.M. Bringa, E. Leveugle, L.V. Zhigilei, J. Phys. Chem. C 114, 5686 (2010)

    Article  Google Scholar 

  23. E.T. Karim, Z. Lin, L.V. Zhigilei, AIP Conf. Proc. 1464, 280 (2012)

    Article  ADS  Google Scholar 

  24. Z. Lin, R.A. Johnson, L.V. Zhigilei, Phys. Rev. B 77, 214108 (2008)

    Article  ADS  Google Scholar 

  25. D.S. Ivanov, Z. Lin, B. Rethfeld, G.M. O’Connor, Th.J. Glynn, L.V. Zhigilei, J. Appl. Phys. 107, 013519 (2010)

    Google Scholar 

  26. C. Wu, D.A. Thomas, Z. Lin, L.V. Zhigilei, Appl. Phys. A 104, 781 (2011)

    Article  ADS  Google Scholar 

  27. L.V. Zhigilei, B.J. Garrison, J. Appl. Phys. 88, 1281 (2000)

    Article  ADS  Google Scholar 

  28. S.I. Anisimov, V.V. Zhakhovskii, N.A. Inogamov, K. Nishihara, A.M. Oparin, Yu.V. Petrov, JETP Lett. 77, 606 (2003)

    Google Scholar 

  29. E. Leveugle, D.S. Ivanov, L.V. Zhigilei, Appl. Phys. A 79, 1643 (2004)

    ADS  Google Scholar 

  30. L.V. Zhigilei, D.S. Ivanov, E. Leveugle, B. Sadigh, E.M. Bringa, Proc. SPIE 5448, 505 (2004)

    Article  ADS  Google Scholar 

  31. A.K. Upadhyay, H.M. Urbassek, J. Phys. D: Appl. Phys. 38, 2933 (2005)

    Google Scholar 

  32. A.K. Upadhyay, N.A. Inogamov, B. Rethfeld, H.M. Urbassek, Phys. Rev. B 78, 045437 (2008)

    Article  ADS  Google Scholar 

  33. B.J. Demaske, V.V. Zhakhovsky, N.A. Inogamov, I.I. Oleynik, Phys. Rev. B 82, 064113 (2010)

    Article  ADS  Google Scholar 

  34. S.I. Ashitkov, N.A. Inogamov, V.V. Zhakhovskii, Yu.N. Emirov, M.B. Agranat, I.I. Oleinik, S.I. Anisimov, V.E. Fortov, JETP Lett. 95, 176 (2012)

    Google Scholar 

  35. E. Ohmura, I. Fukumoto, Int. J. Japan Soc. Prec. Eng. 30, 128 (1996)

    Google Scholar 

  36. L.V. Zhigilei, P.B.S. Kodali, B.J. Garrison, J. Phys. Chem. B 101, 2028 (1997)

    Article  Google Scholar 

  37. R.F.W. Herrmann, J. Gerlach, E.E.B. Campbell, Appl. Phys. A 66, 35 (1998)

    Article  ADS  Google Scholar 

  38. X. Wu, M. Sadeghi, A. Vertes, J. Phys. Chem. B 102, 4770 (1998)

    Google Scholar 

  39. C. Schäfer, H.M. Urbassek, L.V. Zhigilei, Phys. Rev. B 66, 115404 (2002)

    Article  ADS  Google Scholar 

  40. L.V. Zhigilei, Appl. Phys. A 76, 339 (2003)

    Article  ADS  Google Scholar 

  41. L.V. Zhigilei, E. Leveugle, B.J. Garrison, Y.G. Yingling, M.I. Zeifman, Chem. Rev. 103, 321 (2003)

    Article  Google Scholar 

  42. P. Lorazo, L.J. Lewis, M. Meunier, Phys. Rev. Lett. 91, 225502 (2003)

    Article  ADS  Google Scholar 

  43. N.N. Nedialkov, P.A. Atanasov, S.E. Imamova, A. Ruf, P. Berger, F. Dausinger, Appl. Phys. A 79, 1121 (2004)

    Article  ADS  Google Scholar 

  44. C. Cheng, X. Xu, Phys. Rev. B 72, 165415 (2005)

    Article  ADS  Google Scholar 

  45. P. Lorazo, L.J. Lewis, M. Meunier, Phys. Rev. B 73, 134108 (2006)

    Google Scholar 

  46. S. Amoruso, R. Bruzzese, X. Wang, N.N. Nedialkov, P.A. Atanasov, J. Phys. D: Appl. Phys. 40, 331 (2007)

    Google Scholar 

  47. M.B. Agranat, S.I. Anisimov, S.I. Ashitkov, V.V. Zhakhovskii, N.A. Inogamov, K. Nishihara, Yu.V. Petrov, V.E. Fortov, V.A. Khokhlov, Appl. Surf. Sci. 253, 6276 (2007)

    Google Scholar 

  48. E. Leveugle, L.V. Zhigilei, J. Appl. Phys. 102, 074914 (2007)

    Article  ADS  Google Scholar 

  49. M. Prasad, P. Conforti, B.J. Garrison, J. Appl. Phys. 101, 103113 (2007)

    Article  ADS  Google Scholar 

  50. L. Zhang, X. Wang, Appl. Surf. Sci. 255, 3097 (2008)

    Article  ADS  Google Scholar 

  51. M. Gill-Comeau, L.J. Lewis, Phys. Rev. B 84, 224110 (2011)

    Article  ADS  Google Scholar 

  52. L.V. Zhigilei, A.N. Volkov, E. Leveugle, M. Tabetah, Appl. Phys. A 105, 529 (2011)

    Article  ADS  Google Scholar 

  53. S. Sonntag, C. Trichet Paredes, J. Roth, H.-R. Trebin, Appl. Phys. A 104, 559 (2011)

    Google Scholar 

  54. G. Norman, S. Starikov, V. Stegailov, V. Fortov, I. Skobelev, T. Pikuz, A. Faenov, S. Tamotsu, Y. Kato, M. Ishino, M. Tanaka, N. Hasegawa, M. Nishikino, T. Ohba, T. Kaihori, Y. Ochi, T. Imazono, Y. Fukuda, M. Kando, T. Kawachi, J. Appl. Phys. 112, 013104 (2012)

    Google Scholar 

  55. X. Li, L. Jiang, Appl. Phys. A 109, 367 (2012)

    Article  ADS  Google Scholar 

  56. R.K. Singh, J. Narayan, Phys. Rev. B 41, 8843 (1990)

    Article  ADS  Google Scholar 

  57. A. Peterlongo, A. Miotello, R. Kelly, Phys. Rev. E 50, 4716 (1994)

    Article  ADS  Google Scholar 

  58. J.R. Ho, C.P. Grigoropoulos, J.A.C. Humphrey, J. Appl. Phys. 78, 4696 (1995)

    Article  ADS  Google Scholar 

  59. X. Xu, G. Chen, K.H. Song, Int. J. Heat Mass Transfer 42, 1371 (1999)

    Article  Google Scholar 

  60. O.A. Bulgakova, N.M. Bulgakova, V.P. Zhukov, Appl. Phys. A 101, 53 (2010)

    Article  ADS  Google Scholar 

  61. K. Eidmann, J. Meyer-ter-Vehn, T. Schlegel, S. Huller, Phys. Rev. E 62, 1202 (2000)

    Article  ADS  Google Scholar 

  62. J.P. Colombier, P. Combis, F. Bonneau, R. Le Harzic, E. Audouard, Phys. Rev. B 71, 165406 (2005)

    Article  ADS  Google Scholar 

  63. A.N. Volkov, L.V. Zhigilei, J. Phys.: Conf. Ser. 59, 640 (2007)

    Google Scholar 

  64. M.E. Povarnitsyn, T.E. Itina, K.V. Khishchenko, P.R. Levashov, Phys. Rev. Lett. 103, 195002 (2009)

    Article  ADS  Google Scholar 

  65. M.E. Povarnitsyn, T.E. Itina, P.R. Levashov, K.V. Khishchenko, Phys. Chem. Chem. Phys. 15, 3108 (2013)

    Article  Google Scholar 

  66. L.V. Zhigilei, Z. Lin, D.S. Ivanov, E. Leveugle, W.H. Duff, D. Thomas, C. Sevilla, S.J. Guy, in Laser-Surface Interactions for New Materials Production: Tailoring Structure and Properties, ed. by A. Miotello and P. M. Ossi. Springer Series in Materials Science, vol. 130 (Springer, New York, 2010), pp. 43–79

  67. L.V. Zhigilei, E. Leveugle, D.S. Ivanov, Z. Lin, A.N. Volkov, in Nanosized Material Synthesis by Action of High-Power Energy Fluxes on Matter (Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2010), pp. 147–220 (in Russian)

  68. C. Wu, E.T. Karim, A.N. Volkov, L.V. Zhigilei, in Lasers in Materials Science, ed. by P. M. Ossi, M. Castillejo, L. V. Zhigilei. Springer Series in Materials Science, vol. 191 (Springer, New York, 2014)

  69. A. Miotello, R. Kelly, Appl. Phys. A 69, S67 (1999)

    ADS  Google Scholar 

  70. N.M. Bulgakova, A.V. Bulgakov, Appl. Phys. A 73, 199 (2001)

    Article  ADS  Google Scholar 

  71. B.J. Garrison, T.E. Itina, L.V. Zhigilei, Phys. Rev. E 68, 041501 (2003)

    Article  ADS  Google Scholar 

  72. S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man, Sov. Phys. JETP 39, 375 (1974)

    ADS  Google Scholar 

  73. L.V. Zhigilei, B.J. Garrison, Mat. Res. Soc. Symp. Proc. 538, 491 (1999)

    Article  Google Scholar 

  74. C. Schafer, H.M. Urbassek, L.V. Zhigilei, B.J. Garrison, Comput. Mater. Sci. 24, 421 (2002)

    Article  Google Scholar 

  75. Y. Mishin, D. Farkas, M.J. Mehl, D.A. Papaconstantopoulos, Phys. Rev. B 59, 3393 (1999)

    Article  ADS  Google Scholar 

  76. G.P. Purja Pun, Y. Mishin, Phil. Mag. 89, 3245 (2009)

    Google Scholar 

  77. R.W. Ohse, H. von Tippelskirch, High Temp. High Press. 9, 367 (1977)

    Google Scholar 

  78. V. Morel, A. Bultel, B.G. Chéron, Int. J. Thermophys. 30, 1853 (2009)

    Article  ADS  Google Scholar 

  79. N. Tsakiris, L.J. Lewis, Eur. Phys. J. B 86, 313 (2013)

    Article  ADS  Google Scholar 

  80. http://www.faculty.virginia.edu/CompMat/electron-phonon-coupling/

  81. R.H.M. Groeneveld, R. Sprik, A. Lagendijk, Phys. Rev. B 51, 11433 (1995)

    Article  ADS  Google Scholar 

  82. K.C. Mills, B.J. Monaghan, B.J. Keene, Int. Mater. Rev. 41, 209 (1996)

    Google Scholar 

  83. G. Tas, H.J. Maris, Phys. Rev. B 49, 15049 (1994)

    Article  ADS  Google Scholar 

  84. J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, E. Matthias, Chem. Phys. 251, 237 (2000)

    Article  ADS  Google Scholar 

  85. D. Bäuerle, Laser Processing and Chemistry (Springer, Berlin, 2000)

    Book  Google Scholar 

  86. B.J. Siwick, J.R. Dwyer, R.E. Jordan, R.J.D. Miller, Chem. Phys. 299, 285 (2004)

    Article  ADS  Google Scholar 

  87. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976)

    Google Scholar 

  88. M.A. Bhatia, K.N. Solanki, A. Moitra, M.A. Tschopp, Metall. Mater. Trans. A 44, 617 (2013)

    Article  Google Scholar 

  89. J.-M. Savolainen, M.S. Christensen, P. Balling, Phys. Rev. B 84, 193410 (2011)

    Article  ADS  Google Scholar 

  90. A. Strachan, T. Çağın, W.A. Goddard III, Phys. Rev. B 63, 060103 (2001)

  91. G. Paltauf, P.E. Dyer, Chem. Rev. 103, 487 (2003)

    Article  Google Scholar 

  92. E. Leveugle, L.V. Zhigilei, Appl. Phys. A 79, 753 (2004)

    ADS  Google Scholar 

  93. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, S.I. Anisimov, Phys. Rev. Lett. 81, 224 (1998)

    Article  ADS  Google Scholar 

  94. A.A. Ionin, S.I. Kudryashov, L.V. Seleznev, D.V. Sinitsyn, JETP Lett. 94, 753 (2011)

    Article  ADS  Google Scholar 

  95. A.A. Ionin, S.I. Kudryashov, L.V. Seleznev, D.V. Sinitsyn, A.F. Bunkin, V.N. Lednev, S.M. Pershin, JETP 116, 347 (2013)

  96. A. Vrij, Discuss. Faraday Soc. 42, 23 (1966)

    Article  Google Scholar 

  97. G.L. Klimchitskaya, U. Mohideen, V.M. Mostepanenko, Phys. Rev. A 61, 062107 (2000)

    Article  ADS  Google Scholar 

  98. J.M. Howe, Interfaces in Materials: Atomic Structure, Thermodynamics and Kinetics of Solid–Vapor, Solid–Liquid and Solid–Solid Interfaces (Wiley, New York, 1997)

    Google Scholar 

  99. L.V. Zhigilei, Mater. Res. Soc. Symp. Proc. 677, AA2.1.1–AA2.1.11 (2001)

  100. T.E. Itina, K. Gouriet, L.V. Zhigilei, S. Noël, J. Hermann, M. Sentis, Appl. Surf. Sci. 253, 7656 (2007)

    Article  ADS  Google Scholar 

  101. T.E. Itina, L.V. Zhigilei, J. Phys.: Conf. Ser. 59, 44 (2007)

    Google Scholar 

  102. M.I. Zeifman, B.J. Garrison, L.V. Zhigilei, Appl. Surf. Sci. 197–198, 27 (2002)

    Article  Google Scholar 

  103. M.I. Zeifman, B.J. Garrison, L.V. Zhigilei, J. Appl. Phys. 92, 2181 (2002)

    Article  ADS  Google Scholar 

  104. S. Noël, J. Hermann, T. Itina, Appl. Surf. Sci. 253, 6310 (2007)

    Article  ADS  Google Scholar 

  105. S. Amoruso, R. Bruzzese, C. Pagano, X. Wang, Appl. Phys. A 89, 1017 (2007)

    Article  ADS  Google Scholar 

  106. S. Amoruso, R. Bruzzese, X. Wang, J. Xia, Appl. Phys. Lett. 92, 041503 (2008)

    Article  ADS  Google Scholar 

  107. O. Albert, S. Roger, Y. Glinec, J.C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perriere, E. Millon, Appl. Phys. A 76, 319 (2003)

    Article  ADS  Google Scholar 

  108. N. Jegenyes, J. Etchepare, B. Reynier, D. Scuderi, A. Dos-Santos, Z. Tóth, Appl. Phys. A 91, 385 (2008)

    Article  ADS  Google Scholar 

  109. Y. Okano, K. Oguri, T. Nishikawa, H. Nakano, Appl. Phys. Lett. 89, 221502 (2006)

    Article  ADS  Google Scholar 

  110. H. Nakano, K. Oguri, Y. Okano, T. Nishikawa, Appl. Phys. A 101, 523 (2010)

    Article  ADS  Google Scholar 

  111. I. Apitz, A. Vogel, Appl. Phys. A 81, 329 (2005)

    Article  ADS  Google Scholar 

  112. T. Donnelly, J.G. Lunney, S. Amoruso, R. Bruzzese, X. Wang, X. Ni, J. Appl. Phys. 108, 043309 (2010)

    Google Scholar 

  113. E. Leveugle, L.V. Zhigilei, A. Sellinger, J.M. Fitz-Gerald, Appl. Surf. Sci. 253, 6456 (2007)

    Article  ADS  Google Scholar 

  114. K.B. Shepard, C.B. Arnold, R.D. Priestley, Appl. Phys. Lett. 103, 123105 (2013)

    Article  ADS  Google Scholar 

  115. S.-H. Lai, K.-H. Chang, J.-L. Lin, C.-L. Wu, C.-H. Chen, Chem. Phys. Lett. 561–562, 142 (2013)

    Article  Google Scholar 

  116. H.M. Urbassek, Nucl. Instrum. Methods Phys. Res. B 31, 541 (1988)

    Article  ADS  Google Scholar 

  117. A. Bershadskii, Eur. Phys. J. B 14, 323 (2000)

    Article  ADS  Google Scholar 

  118. J.A. Aström, R.P. Linna, J. Timonen, P.F. Möller, L. Oddershede, Phys. Rev. E 70, 026104 (2004)

    Article  ADS  Google Scholar 

  119. G. Timár, J. Blömer, F. Kun, H.J. Herrmann, Phys. Rev. Lett. 104, 095502 (2010)

    Article  ADS  Google Scholar 

  120. I.S. Bitensky, E.S. Parilis, Nucl. Instrum. Methods Phys. Res. B 21, 26 (1987)

    Google Scholar 

  121. L.E. Rehn, R.C. Birtcher, P.M. Baldo, A.W. McCormick, L. Funk, Nucl. Instrum. Methods Phys. Res. B 212, 326 (2003)

    Article  ADS  Google Scholar 

  122. O. Durand, L. Soulard, J. Appl. Phys. 111, 044901 (2012)

    Google Scholar 

  123. N.A. Inogamov, Y.V. Petrov, S.I. Anisimov, A.M. Oparin, N.V. Shaposhnikov, D. von der Linde, J. Meyer-ter-Vehn, JETP Lett. 69, 310 (1999)

    Google Scholar 

  124. J. Yang, Y. Zhao, N. Zhang, Y. Liang, M. Wang, Phys. Rev. B 76, 165430 (2007)

    Article  ADS  Google Scholar 

  125. V.V. Semak, J.G. Thomas, B.R. Campbell, J. Phys. D: Appl. Phys. 37, 2925 (2004)

    Google Scholar 

  126. A. Ben-Yakar, A. Harkin, J. Ashmore, R.L. Byer, H.A. Stone, J. Phys. D: Appl. Phys. 40, 1447 (2007)

    Google Scholar 

  127. M. von Allmen, J. Appl. Phys. 47, 5460 (1976)

    Article  ADS  Google Scholar 

  128. B. Liu, Z. Hu, Y. Che, Y. Chen, X. Pan, Appl. Phys. Lett. 90, 044103 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by the National Science Foundation (NSF) through Grants DMR-0907247 and CMMI-1301298, Electro Scientific Industries, Inc., and the Air Force Office of Scientific Research through Grant FA9550-10-1-0541. Computational support was provided by the Oak Ridge Leadership Computing Facility (projects MAT048) and NSF through the Extreme Science and Engineering Discovery Environment (project TG-DMR110090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid V. Zhigilei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, C., Zhigilei, L.V. Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations. Appl. Phys. A 114, 11–32 (2014). https://doi.org/10.1007/s00339-013-8086-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8086-4

Keywords

Navigation